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Abstract 

A new approach to the multifile physical database design is presented. Most previous approaches 

towards multifile physical database design concentrated on developing cost evaluators for given 

designs. To accomplish the optimal physical design, however, these approaches had to rely on the 

designer's intuition or on exhaustive search, which is practically infeasible even for moderate-sized 

databases. 

In our approach we develop a theory called separability to partition the entire database design 

problem into collective subproblems. Straightforward heuristics are employed to incorporate the 

features that cannot be included in the formal theory. This approach is somewhat formal, 

deliberately avoiding excessive reliance on heuristics. Our purpose is to render the whole design 

phase manageable and to facilitate understanding of the underlying mechanisms. 

We develop a design methodology for relational database systems based on the theory. First, we 

set up a basic design phase in accordance with a formal method that includes a large subset of 

practically important join methods and then, using heuristics, extend the design procedure to 

include other join methods as well. 

We show that the theory of separability can be applied to network model databases as well. In 

particular, we show that a large subset of practically important access structures that are available in 

network model database systems satisfies the conditions for separability. 

As an application to the above theory, we propose three physical database design algorithms for 

relational database systems. These algorithms have been fully implemented in the Physical Database 

Design Optimizer (PhyDDO) in about 6000 lines of Pascal code and tested for their validation. The 

results show that the solutions generated by the design algorithms do not significantly deviate from 

the optimal solutions. For the implementation of these design algorithms an extensive set of cost 

formulas for queries, update, deletion, and insertion transactions have been developed. 

IV 



Index selection is an important subproblem of physical database design. Index selection 

algorithms for relational databases are introduced and tested for their validation. The results show 

that these heuristic algorithms do not produce significant deviations from the optimal solutions. 

Finally, we introduce a closed noniterative formula for estimating the number of block accesses. 

This formula, an approximation of Yao's exact formula, provides significant improvements in both 

speed of evaluation and accuracy compared with earlier formulas developed by Yao and Cardenas. 

In summary, important issues on multifile physical database design are investigated in this 

dissertation. The proposed methodology is consolidated through extensive implementation and 

validation procedures. We believe that our approach can enable substantial progress to be made in 

the optimal design of multifile physical databases. 
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Foreword 

This dissertation consists of three components: main chapters, major appendices, and minor 

appendices. The major appendices consists of six papers1 that either have been published, accepted, 

or submitted for publication. The main chapters are a continuous summary of the research 

presented in the major appendices. Some topics that are not fully discussed in the papers are also 

included in the main chapters. Appendix A has been published in the Proceedings of the Seventh 

International Conference on Very Large Databases, Cannes, France, September 1981, and also has 

been submitted for publication to an IEEE journal. Appendix B has been published in the 

Proceedings of the Eighth International Conference on Very Large Databases, Mexico City, Mexico, 

September 1982. Appendix C has been accepted by the Communications of the ACM. Appendices 

D, E, and F have been submitted to publications such as IEEE or ACM Transactions. Minor 

appendices (Appendix G to Appendix J) supplement the topics discussed only partially in the main 

chapters and appendices. The work described in the first three papers, coauthored by Professor Gio 

Wiederhold and Dr. Daniel Sagalowicz, has been performed by the author as part of his dissertation 

research under the careful supervision of the two coauthors. 

This work was supported by the Defense Advanced Research Project Agency, under the KBMS 

Project, Contract No. N39-80-G-0132 and N39-82-C-0250. 

*In this report the first three papers arc omitted from the original dissertation since they have already been published 

elsewhere. 
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CHAPTER 1. INTRODUCTION 

1. Introduction 

1.1 Issues on Physical Database Design 

The problem of physical database design is concerned with finding designing the underlying 

storage structures that support the logical databases. Since a good design of the physical database 

has a vital influence on the database performance, the physical design problem has long been an 

object of intense research and interest. Typically, the research in this area has been performed in 

several directions: file modelling and selection, access structure selection, and index selection. Each 

area will be briefly surveyed in the following subsections. 

Before proceeding, we define two new terms that play important roles throughout the 

development of the thesis. First, we define the term access structures as the features that a particular 

database management system (DBMS) provides for the physical database design. For instance, 

access structures can be indexes, hashed organization, clustering of the records, etc. Second, we 

define the term access configuration of a logical object-such as a relation in relational database 

systems, a record type in network model database systems, or an entire database-to mean the 

aggregate of access structures specified to support that logical object. Thus, the access configuration 

is an abstraction of the physical database. 

A related problem that has a significant effect on database performance is query optimization. 

Query optimization seeks the optimal sequence of access operations for processing a specific query 

given a certain access configuration of the underlying physical database. Since query optimization 

has a close relationship with physical database design, we first introduce a short survey on this 

subject. 
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CHAPTER 1. INTRODUCTION 

1.1.1 Query optimization 

The query optimization problem has been most often addressed in the context of relational 

database systems. The optimizer is a component of a DBMS that automatically translates the 

transactions expressed in high-level query languages-such as relational calculus or relational 

algebra languages-to an optimal (or suboptimal) sequences of access operations to process the 

transactions. In a DBMS having an optimizer the user need not know the physical structure of the 

database. Instead, the optimizer estimates the cost of each possible alternative for processing the 

transaction based on the given physical structure of the database and figures out the minimum-cost 

sequence of access operations. Various algorithms for query optimization have been extensively 

studied. Smith and Chang [SMI 75], and Pecherer [PEC 75] studied optimization of transactions 

expressed in relational algebra. Various join methods were investigated in [GOT 75], [BLA 76], and 

[YAO 79]. Detailed optimization algorithms for some existing database management systems were 

also introduced. One for System R [AST 76], based on the modified branch-and-bound technique, 

was presented in [SEL 79]. An algorithm for INGRES [STO 76] based on decomposing a 

multivariable query into a sequence of one-variable queries was presented in [WON 76]. An 

improved version of the INGRES optimization strategy appeared in [KOO 82]. Query optimization 

has also been investigated in systems where databases are distributed over multiple processors. 

Hcvner and Yao [HEV 79] developed an optimization algorithm for distributed databases using the 

optimization criterion of minimizing the data communication cost between different sites. An 

optimization strategy for SDD-1 (System for Distributed Databases) using semijoins was presented 

in [GOO 79]. 

1.1.2 File modelling and selection 

This problem addresses selecting appropriate file structures for a given collection of records and 

user requirements. There are several levels of approach towards this problem. The first level deals 

with specific file structures such as ISAM files and their implementations in detail [SEN 69]. The 

second deals with  specific  file structures such  as inverted  files or multilists,  but ignore 
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CHAPTER 1. INTRODUCTION 

implementation details such as hardware considerations [CAR 75].  The third attempts to model 

most of the existing file structures with a unifying model and provides a generalized cost function of 

accesses. 

The pioneering work in developing unifying models was done by Hsiao and Harary [HSI70] who 

formalized the structure of the file as two level structures consisting of a directory and a set of 

records. Severance [SEV 75] refined the model by introducing two types of pointers between 

elements of the structure: successor pointers and data pointers. Yao [YAO-a 77] subsequently 

generalized both models by allowing multilevel directory structure. A unifying model for multifile 

databases was developed by Batory [BAT 82]. This model exploits the notion of database 

decomposition in which a database is modelled by a set of simple files and a set of link sets 

interconnecting these simple files. 

In a different approach, instead of using a unifying model of different file structures, Severance 

and Carlis [SEV 77] developed a simple taxonomy of various file structures. Using this taxonomy, 

appropriate file structures can readily be chosen from the characteristics of the application which is 

expressed in terms of average quantity of records retrieved, required speed of response, and volume 

of on-line updates. 

In most research in file modelling, the emphasis was on developing cost functions that evaluate 

the cost of processing transactions acting upon a database having a certain structure. In these 

approaches, however, selection of the optimal file structure can only be done according to the 

designer's intuition or by trial-and-error. Automatic selection of the optimal file structure for large 

multifile databases will be addressed in the next subsection. 
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CHAPTER 1. INTRODUCTION 

1.1.3 Access structure selection 

The access structure selection problem addresses finding an access configuration that gives the 

best performance. A major premise in this problem is the existence of a database management 

system which provides access structures to be utilized in physical database design. In particular, we 

are not concerned with designing access structures themselves; it is assumed that they have already 

been implemented according to the specific technique employed by the DBMS considered. 

A straightforward approach to this problem is to design a cost evaluator that produces the total 

cost of processing transactions acting upon a specific access configuration. Using this cost evaluator, 

an optimal access configuration can be found by exhaustively searching through all possible access 

configurations-by designer's intuition or by trial-and-error. Teorey and Oberlander [TEO 78] 

presented a database design evaluator as a design aid to Honeywell's IDS [HON 71]. Gerritsen and 

Gambino[GER 77], [GAM 77] developed a database design decision support system based on the 

DBTG model [COD 71]. Earlier, similar work on the design support system for network model 

databases appeared in [MIT 75] and [DE 78]. 

In most past research a common problem is that an optimal solution can be found only by 

exhaustively searching through all possible access configurations. The number of possible access 

configurations, however, can be intolerably large even when a small database is considered. In an 

effort to accomplish automatic design of physical database without an exhaustive search, Schkolnick 

and Tiberio [SCH 79] developed an algorithm based on partial exhaustive search. A certain number 

of intermediate solutions that are best at any design stage are saved, and an exhaustive search is 

performed starting from those intermediate solutions to a predefined depth in the search tree. The 

same number of best solutions in the results are saved and the procedure is repeated. A physical 

database design aid system (DBDSGN)[FIN 82] for system R has been implemented using this 

algorithm. One interesting feature of the system is that the algorithm uses System R's own optimizer 

as the cost evaluator. The validity of the heuristic involved, however, has not been well established. 
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CHAPTER 1. INTRODUCTION 

Although this algorithm significantly improves the time complexity compared with the 

exhaustive-search approach, it still has a potential of being excessively time consuming when a very 

large database is designed. Certainly, a more efficient algorithm needs to be developed. In 

subsequent chapters in this dissertation we shall develop a formal method of partitioning the design 

problem into disjoint subproblems in order to reduce the time complexity. We then develop 

physical database design algorithms based on this formal method. Heuristics are subsequently 

employed to further reduce the time complexity. 

1.1.4 Index selection 

The index selection problem is an interesting subproblem of the access structure selection 

problem. The problem is concerned with finding an optimal set of indexes that minimizes the total 

transaction-processing cost. There has been a significant research effort on this problem. A 

pioneering work based on a simple cost model appeared in [LUM 71]. Some approaches [KIN 

74], [STO 74] attempted to formalize the problem in order to find analytic results in certain restricted 

cases. In a more theoretical approach Comer [COM 78] proved that even a simplified version of the 

index selection problem is NP-complete. Thus, the best known algorithm to find an optimal 

solution would have an exponential time complexity. In an effort to find a more efficient algorithm, 

Schkolnick [SCH 75] discovered that, if the cost function satisfies a property called regularity, the 

complexity of the optimal index selection can be reduced to less than exponential. Hammer and 

Chan [HAM 76] took a somewhat different approach and developed a heuristic algorithm that 

significantly reduced the time complexity. 

Most previous approaches towards optimal index selection, however, are limited to single-file 

cases. Furthermore, they only deal with secondary indexes without considering indexes coupled to 

the primary structure (clustering) of the file. Solutions for multifile cases or for the cases in which 

the primary structure is incorporated will be presented in Chapter 5. 
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CHAPTER 1. INTRODUCTION 

1.2 Objective of the Dissertation 

In this dissertation we concentrate on the access structure selection problem among the issues on 

physical database design surveyed in Section 1.1. In addition, the index selection problem will be 

studied as a subproblem of the access structure selection problem. In other words, we consider the 

problem of selecting the optimal access configuration of a database using the access structures that a 

particular DBMS we have at hand provides for the physical database design. The file modelling 

problem will not be explicitly considered; but, the techniques for solving this problem could help 

the implementation of the access structures themselves which we assume are already available. 

Hence, from now on, we consider the physical database design as a synonym for the access structure 

selection. 

Most of previous research on physical database design concentrated on developing a cost 

evaluator, and selection of optimal access configuration remained dependent on the designer's 

intuition or an exhaustive search through all possible access configurations. Although an exhaustive 

search guarantees finding an optimal solution, it is practically impossible even with a small-sized 

database. This point is illustrated in Example 1.1. 

Example 1.1: We look into a very simplified design process of a small database based on an 

exhaustive-search algorithm. We assume that the only access structure available is the clustering 

property. A column is said to have the clustering property, if a relation is stored according to the 

order of the column values. Although the clustering property can be assigned to a combination of 

multiple columns, in this example, we assume for simplicity that it can be assigned only to a single 

column. 

Using this access structure, for a given set of transactions as input information, we want to find an 

optimal access configuration for the database consisting of relations Rj and R2 each of which owns 

two attributes. We have nine possible access configurations as in Figure 1-1, in which dashed lines 

show the position of the clustering column. 
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CHAPTER 1. INTRODUCTION 

A2 Aj B!  B2 A2 At B,  B2 

1  /      1 
1  /      1 
1  /      1 

1  /      1 
1  /      1 
1  /      1 

1  /      1 
1  /      1 
1  /      1 

1 / 1 
1 / 1 
1      /   1 

Rl 

A2  Al 

R2 

Bi  B2 

Rl 

A2  Al 

R2 

Bi  B2 

1  /       1 
1  /       1 
1  /       1 

1         1 
1         1 
1         1 

1      /   1 
1  '   /   1 
1      /   1 

1 / 1 
1 / 1 
1  /      1 

A2  Al 
B! B2 A2 Aj B!  B2 

1       /   1 
1       /   1 
1       /   1 

1 
1 
1 

/   1 
/   1 
/   1 

1     /   1 
1     /   1 
1     /   1 

1 1 
1 1 
1           1 

Rl R2 Rl R2 

A2  Ax Bl B2 
A2  Al 

Bi B2 

1         1 
1         1 
1         1 

1  / 
1  / 
1  / 

1 
1 
1 

1           1 
1           1 
1           1 

1 / 1 
1 / 1 
1       /   1 

Rl R2 Rl R2 

A2  Aj Bl B2 

I     I 

I     I 

Figure 1-1:  Nine Access Configurations. 

The optimal access configuration can be found as follows: 
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CHAPTER 1. INTRODUCTION 

1. for each of the nine configurations: 

1.1. find the best join method for each query 

1.2. obtain the total processing cost 

2. select the configuration that yields the minimum processing cost 

In this simple design example, we have only nine possible access configurations; but the number 

of access configurations is explosive if we have more relations, more attributes in a relation, and 

various kinds of access structures such as the clustering property, indexes, links, etc. For instance, if 

we have five relations having five attributes each, with indexes and the clustering property as 

available access structures, the number of possible access configurations becomes 

(6X6X6X6X6) X (25X25X25X25X25) = 2.6 X 1011 D 

As we see in Example 1, the cost of the exhaustive-search method becomes intolerably high even 

with a very small database. As pointed out in [GER 77], a relevant partitioning of the entire design 

is necessary to make the optimal design of physical databases a practical matter. 

In this dissertation we shall develop a methodology for the design of multifile physical databases 

so that it can be applied to many situations with reasonable efficiency and accuracy. In particular, 

we discuss the issues involved in designing the access configuration of a physical database so as to 

minimize the total processing cost of in nut transactions-including queries and update transactions. 

In calculating the processing cost we only consider the number of I/O accesses; the cost due to the 

CPU time is not included. Our approach is somewhat formal and mathematical, deliberately 

avoiding excessive reliance on heuristics. Our purpose is to render the whole design phase 

manageable and to facilitate understanding of underlying mechanisms. 

We proceed by first developing a design theory called separability that enables us to partition the 

entire design problem into disjoint subproblcms. We then show that important subsets of features 
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CHAPTER 1. INTRODUCTION 

provided by both relational and network model database systems satisfy the conditions for 

separability. Thus, if features are restricted to these subsets, the optimal design of access 

configurations of multifile databases can be reduced to the collective optimal designs of smaller 

objects. In principle, these smaller objects, which we call logical objects, can be any subsets of the 

database being designed. However, in practice, the most convenient partition would be the set of 

individual relations for relational systems or record types for network model database systems. 

According to the theory, a basic design is obtained by using only features that satisfy the conditions 

for separability. This basic design is then extended, using some straightforward heuristics, to include 

other features provided by database management systems. 

In Chapter 2 we develop the skeleton of the theory of separability and prove the separability 

theorem. We then investigate, in Chapter 3, how the theory can be applied to relational database 

systems. The application of the theory to network model database systems is presented in Chapter 8. 

Physical database design algorithms for multifile relational databases that are based on the theory 

and extended by heuristics are presented in Chapter 4. The index selection problem is an important 

subproblem of the physical database design problem. For this reason it is given a separate 

consideration in Chapter 5. The algorithms developed in Chapter 4 are fully implemented in 6000 

lines of Pascal code. The cost formulas used in the implementation are summarized in Chapter 6. In 

developing cost formulas the function that estimates the number of block accesses when randomly 

selected tuples are retrieved in their physical order plays a particularly important role. The exact 

form of this function and various approximation formulas for faster evaluation are summarized in 

Chapter 7. Finally, briefly discussed in Chapter 9 are extensions of the design algorithms to the 

transactions that involve morc-than-two variables. 
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2. Theory of Separability 

The complexity of the physical database design stems from the interaction among the individual 

logical objects in the process of physical design. This interaction among logical objects prevents us 

from designing the access configurations of individual logical objects independently of one another 

because the optimal access configuration of a logical object is dependent on the access configurations 

of other logical objects. 

A major cause of this interaction, in turn, is the join operation in relational databases or the SET 

traversal in network model databases (we shall simply call these two operations as the join 

operation). The cost of a join operation depends on access configurations of all logical objects 

participating in the join. Accordingly, we cannot determine die optimal access configuration of a 

particular logical object without the knowledge on the optimal access configurations of other logical 

objects. Similarly, the optimal configurations of other logical objects may depend on this particular 

logical object. Thus, we conclude that, in the most general cases, the only possible approach is to 

design the optimal configurations of all the logical objects simultaneously. But, as shown in 

Example 1.1, the complexity of this approach is intolerable. 

However, we shall show in this chapter that, given a certain set of restrictions, the problem of 

optimally designing the access configuration of the entire database can be reduced to the 

subproblems of optimizing individual logical objects in the database independently of one another. 

The theorem of separability presented below formalizes this idea. Before introducing the theorem 

we need the following definitions. 

Definition 2.1: The procedure of designing the optimal access configuration of a database is 

separable if it can be decomposed into the tasks of designing the optimal configurations of individual 

logical objects independently of one another. D 
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Definition 2.2: A partial-operation cost of a transaction is the part of the transaction processing 

cost that corresponds to the access to only one logical object, as well as of the auxiliary access 

structures defined for it. D 

Definition 2.3: A partial operation is a conceptual division of the transaction whose processing cost 

is a partial-operation cost. D 

Theorem 2.1: (Separability) The procedure of designing the optimal access configuration of a 

database is separable if the following conditions are satisfied: 

1. The partial-operation cost of a transaction for a logical object is independent of both the 
access configuration specified and the partial operations used for the other logical 
objects. 

2. A partial operation for a logical object can be chosen regardless of the access 
configuration specified and the partial operations used for the other logical objects. 

3. Access structures for a logical object can be chosen independently of access 
configurations of the other logical objects. 

Proof: Condition 2 states that, in selecting a partial operation of a transaction for a logical object, 

we are constrained neither by the access configurations of the other logical objects nor due to the 

partial operations used for them. Similarly, Condition 3 says that we are free to choose any access 

structures for a logical object regardless of the access structures chosen for the other logical objects. 

Furthermore, from Condition 1, a partial-operation cost of a transaction for a particular logical 

object, given a specific access configuration of the logical object, is affected neither by the access 

configurations of the other logical objects nor due to the partial operations used for them. 

Therefore, the partial operation cost of a transaction for a logical object is in no way affected by 

design decisions-choices of access structures and partial operations —of the other logical objects; 

nor do design decisions of a logical object affect the partial operation costs of transactions for the 

other logical objects. Thus, we can design individual logical objects independently of one another. 

Q.E.D. 
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Many database management systems satisfy Condition 3 in the sense that they do not put any 

restrictions in assigning access structures to different logical objects so that we can choose any access 

structures for a logical object regardless of the access structures assigned to other logical objects. 

Therefore, from now on, we exclude Condition 3 from our consideration. 

Condition 1 is easy to check if we have specific cost formulas, but is somewhat difficult otherwise. 

In this case we define the following conditions which are sufficient and easier to check. 

Sufficient conditions for Condition 1: The three items below are independent of the access 

configurations specified for the other logical objects and the partial operations used for the other 

logical objects. 

1.1. Cardinality of the set of records accessed in the partial operation 

1.2. The order according to which these records are accessed 

1.3. Relative placement of these records in the storage medium 

The partial operation cost of a transaction for a logical object, which represents the cost of 

accessing the set of records selected for this logical object, can be determined from these three items 

because they specify the number of records to be accessed, the locations of the records in the storage 

medium and the order of accessing those records. Thus, Conditions 1.1,1.2, and 1.3 together form a 

sufficient condition for Condition 1 in Theorem 2.1 since they state that the three items in a logical 

object, and accordingly die partial operation cost of a transaction, are independent of the design 

decisions for the other logical objects. Note that these conditions are not necessary conditions 

because, although very unlikely, partial operation costs could be the same even though one the 

conditions is not satisfied. 

We have now stated the conditions for separability in Theorem 2.1. Since Condition 3 is usually 

satisfied by database management systems, we consider only Conditions 1 and 2 in subsequent 

chapters.    Three sufficient conditions for Condition 1 for separability have been presented. 
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Condition 1 will be substituted by these sufficient conditions whenever specific cost formulas are not 

available. 
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3. Separability In Relational Database 
Systems 

3.1 Introduction 

In this chapter and Appendix A we investigate how the theory outlined in Chapter 2 can be 

applied to relational database systems. Appendix A is a preliminary version of this chapter as is 

published in the Proceedings of the Seventh International Conference on Very Large Databases held 

in Cannes, France, in September 1981. We shall prove that a set of join methods which are 

important in practice satisfies the conditions for separability. The implication is that, if the available 

join methods are restricted to this set, the optimal design of the access configuration of a multifile 

database can be reduced to the collective optimal designs of individual relations. The physical 

designs thus obtained will be extended, using some straightforward heuristics, to incorporate other 

join methods as well. This extension will be discussed in Chapter 4. 

Section 3.2 introduces major assumptions, while Section 3.3 describes applicable join methods of 

interest. In Section 3.5 we analyze those join methods and proves that an important subset has the 

separability property. We first proceed by presenting a series of case analyses using the simple cost 

model introduced in Section 3.4 and defining necessary terms. The ideas thus obtained are 

summarized in Subsection 3.5.3. 

3.2 Approaches and Assumptions 

We assume that the DBMS we consider provides as access structures indexes and the clustering 

property of a single relation. Clustering of two or more relations, as is supported in many 

hierarchical organizations, is not considered. 

The database is assumed to reside on disklike devices. Physical storage space for the database is 

divided into units of fixed size called blocks [WIE 83].   The block is not only the unit of disk 
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allocation, but is also the unit of transfer between main memory and disk. We assume that a block 

that contains tuples of a relation contains only tuples ofthat relation. Furthermore, we assume that 

the blocks containing tuples of a relation can be accessed serially. However, the blocks do not have 

to be contiguous on the disk.1 For simplicity, we assume that a relation is mapped into a single file. 

Accordingly, from now on, we shall use the terms file and relation interchangeably; nor shall we 

make any distinction between an attribute and a column or between a tuple and a record. 

We shall develop a simple cost model of the storage structure in Section 3.4, and shall use various 

cost formulas based on this model for case studies. We assume that no block access will be incurred 

if the next tuple (or index entry) to be accessed resides in the same block as that of the current tuple 

(or index entry); otherwise, a new block access is necessary. We also assume that all TID (tuple 

identifier) manipulations can be performed in main memory without any need for I/O accesses. 

We consider only one-to-many (including one-to-one) relationships between relations. It is 

argued in Appendix G that many-to-many relationships between relations are less important for the 

optimization purpose. Note that here we are dealing with relationships in relational representations 

based on the equality of join-attribute values; a many-to-mariy relationship among distinct entity 

sets at the conceptual level is often structured with an additional intermediate relation [ELM 80]. 

Finally, we are considering only one-variable or two-variable queries in this chapter. For a query 

of more than two variables, a heuristic approach can be employed to decompose it into a sequence of 

two-variable queries (These correspond to one-overlapping queries in [WON 76]). The 

decomposition approach will be discussed in Chapter 9. 

For example, blocks of a file can be spread over the disk while they are connected as a linked list or linked implicitly by a 
file map. 
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3.3 Transaction Evaluation 

3.3.1 Queries 

The class of queries we consider is shown in Figure 3-1. The conceptual meaning of this class of 

queries is as follows. Tuples in relation RL are restricted by restriction predicate Pr Similarly, 

tuples in relation R2 are restricted by predicate Pr The resulting tuples from each relation are 

joined according to the join predicate RrA = R2.B, and the result projected over the columns 

specified by <list of attributesX We call the columns that are involved in the restriction predicates 

restriction columns, and those in the join predicate join columns. The actual implementation of this 

class of queries does not have to follow the order specified above as long as it produces the same 

result 

SELECT <listofattributes> 
FROM    Rr R2 

WHERE RrA = R2.B AND 
P1 AND 
P2 

Figure 3-1: General Class of Queries Considered. 

Query evaluation algorithms, especially for two-variable queries, have been studied in [BLA 76] 

and [YAO 79]. The algorithms for evaluating queries differ significantly in the way they use join 

methods. Before discussing the various join methods, let us define some terminology. Given a 

query, an index is called a join index if it is defined for the join column of a relation. Likewise, an 

index is called a restriction index if it is defined for a restriction column. We use the term subluple 

for a tuple that has been projected over some columns. The restriction predicate in a query for each 

relation is decomposed into the form Qx AND Q2, where Q1 is a predicate that can be processed by 

using indexes, while Q2 cannot. Q2 must be resolved by accessing individual records. We shall call 

Q. the index-processible predicate and Q2 the residual predicate. 
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Some algorithms for processing joins that are of practical importance are summarized below (see 

also[BLA76][SEL79]): 

• Join Index Method: This method presupposes the existence of join indexes. For each 
relation, the TIDs of tuples that satisfy the index processible predicates are obtained by 
manipulating the TIDs from each index involved; the resultant TIDs are stored in 
temporary relations Rj' and R2'. TID pairs with the same join column values are found 
by scanning the join column indexes according to the order of the join column values. 
As they are found, each TID pair (TID1, TID2) is checked to determine whether TIDX is 
present in R1' and TID2 in R2'. If they are, the corresponding tuple in one relation, say 
R,, is retrieved. When this tuple satisfies the residual predicate for R^ the corresponding 
tuple in the other relation R2 is retrieved and the residual predicate for R2 is checked. If 
qualified, the tuples are concatenated and the subtuple of interest is constructed. (We 
say that the direction of the join is from Rx to R2<) 

• Sort-Merge Method: The relations Rj and R2 are scanned-either by using restriction 
indexes, if there is an index-processible predicate in the query, or by scanning the 
relation directly. Restrictions, partial projections, and the initial step of sorting are 
performed while the relations are being initially scanned and stored in temporary 
relations Tx and T2. T1 and T2 are sorted by the join column values. The resulting 
relations are scanned in parallel and the join is completed by merging matching tuples. 

• Combination of the Join Index Method and the Sort-Merge Method: One relation, say 
Rl, is sorted as in the sort-merge method and stored in Tr Relation R2 is processed as in 
the join index method, storing the TIDs of the tuples that satisfy the index processible 
predicates in R2'. T, and the join column index of R2 are scanned according to the join 
column values. As matching join column values are found, each TID from the join 
index of R2 is checked against R2'. If it is in R2', the corresponding tuple in R2 is 
retrieved and the residual predicate for R2 is checked. If qualified, the tuples are 
concatenated and the subtuple is constructed. 

• Inner/Outer-Loop Join Method: In the two join methods described above, the join is 
performed by scanning relations in the order of the join column values. In the 
inner/outer-loop join, one of the relations, say Rp is scanned without regard to order, 
either by using restriction indexes or by scanning the relation directly. For each tuple of 
R1 that satisfies predicate P1, all mples of relation R2 that satisfy predicate P2 and the 
join predicate are retrieved and concatenated with the tuple of Rr The subtuples of 
interest are then projected upon the result. (We say the direction of the join is from R, to 
Rr) 

Let us note that, in the combination of the join index method and the sort-merge method, the 

operation performed on either relation is identical to that performed on one relation in the join 

index method or in the sort-merge method. We call the operations performed on each relation join 

index method (partial) or sort-merge method (partial), respectively; whenever no confusion arises, we 
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call these operations simply join index method or sort-merge method. According to these definitions, 

the complete join index method actually consists of two join index methods (partial) and, similarly, 

the complete sort-merge method consists of two sort-merge methods (partial). 

3.3.2 Update transactions 

We assume that the updates are performed only on individual relations, although the qualification 

part (WHERE clause) may involve more than one relation. Thus, updates are not performed on the 

join of two or more relations. (If they are, certain ambiguity arises on which relations to update 

[KEL 81].) The class of update transactions we consider is shown in Figure 3-2. 

UPDATE Rx 

SET RrC = <new value> 
FROM     Rr R2 

WHERE   RrA = R2.B AND 
Px AND 
P2 

Figure 3-2:  General Class of Update Transactions Considered. 

The conceptual meaning of this class of transactions is as follows. Tuples in relation R, are 

restricted by restriction predicate ?T Let us call the set of resulting tuples T2. Then, the value for 

column C of each tuple in Ri is changed to <new valuc> if the tuple satisfies the restriction predicate 

Px and has a matching tuple in T2 according to the join predicate. In a more familiar syntax [CHA 

76], the class of update transactions can be represented as in Figure 3-3. The equivalence of the two 

representations has been shown for queries in [KIM 82]. 

Deletion transactions are specified in an analogous way. It is assumed that insertion transactions 

refer only to single relations. From now on, unless any confusion arises, we shall refer to update, 

deletion or insertion transactions simply as update transactions. 

The update transaction in Figure 3-2 can be processed just like queries except that an update 
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UPDATE Rj 
SET R..C = <new value> 
WHERE  P1        AND 

RrA     IN 
(SELECT R2.B 
FROM    R2 

WHERE P2 ) 

Figure 3-3: An Equivalent Form of the General Class of Update Transactions, 

operation is performed instead of concatenating and projecting out the subtuples after relevant 

tuples are identified. In particular, all the join methods described in Section 3.3.1 can be used for 

update transactions as well to resolve the join predicates (ones that relate the two relation) that they 

have. But, there are two constraints: 1) The sort-merge method cannot be used for the relation to be 

updated since it is meaningless to create a temporary sorted file to update the original relation. 2) 

When the inner/outer-loop join method is used, the direction of the join must be from the relation 

to be updated (Rx) to the other relation (R2) because, if the direction were reversed, the same tuple 

might be updated more than once. 

3.4 Cost Model of the Storage Structure 

To calculate the cost of evaluating a query, wc need a proper model of the underlying storage 

structure and its corresponding cost formula. Although the theory does not depend on the specifics 

of cost models, it is helpful to have a simple cost model for illustrative purposes. 

We assume that a B+-tree index [BAY 72] can be defined for a column or for a set of columns of a 

relation. The leaf-level of the index consists of pairs (key and TID) for every tuple in that relation. 

The leaf-level blocks arc chained according to the order of indexed column values, so that the index 

can be scanned without traversing the index tree. Entries having the same key value are ordered by 

TID. 

An index is called a clustering index if the relation for which this index is defined is physically 
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clustered according to the index column values. With a clustering index, we assume that no block is 

fetched more than once when tuples with consecutive values of the indexed column are retrieved. 

Except for this ordering property, no other difference in the structure is assumed between a 

clustering and a nonclustering index. The clustering property can greatly reduce the access cost. 

Unfortunately, only one column of a relation can have the clustering property, since clustering 

requires a specific order of records in the physical file. One of the objectives of designing optimal 

physical databases is to determine which column will be assigned the clustering property. 

The access cost will be measured in terms of the number of I/O accesses. The following notation 

will be used throughout this chapter: 

R : A relation. 
Other(R) : The relation to be joined with R. 
C : A column. 
nR : Number of tuples in relation R (cardinality). 
pR : Blocking factor of relation R. 
Lc : Blocking factor of the index for column C. 
Fc : Selectivity of column C or its index 
cc : Subscript for the clustering column. 
mR : Number of blocks in relation R, which is equal to nR/pR. 
imc : Number of blocks that the index for column C occupies. 
t : A transaction 
H R : Projection factor of transaction t on relation R. 

By using the simplified model above, the cost of various operations can be obtained as follows: 

• Relation Scan Cost - Cost for serially accessing all the blocks containing the tuples of a 
relation: 

RS(R) = nR/pR = mR     * 

• Index Scan Cost — Cost for serially accessing the leaf- level blocks of an entire index: 

IS(I.R) = rnR/Lcl 

• Index Access Cost — Cost for one access of the index tree from the root: 

IA(I,R) = riogL  nRl + [Fc X nR/Lcl 

• Sorting Cost - Cost for sorting a relation, or a part thereof, according to the values of 
the columns of interest: 

SORT(NB) = 2 X fNB1 f 2 X [NB] X [logz fNB"|l 
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Here we assume that a z-way sort-merge is used for the external sort [KNU-b 73]. NB is 
the number of blocks in the temporary relation containing the subtuples to be sorted 
after restriction and projection have been resolved. It will be noted that SORT(NB) does 
not include the initial scanning time to bring in the original relation, while it does 
include the time to scan the temporary relation for the actual join after sorting (see [BLA 
76]). 

3.5 Design Theory 

In this section we investigate the property of separability for relational database systems. In 

particular, we shall prove that the set of join methods consisting of the join index method, the 

sort-merge method, and the combination of the two satisfies the conditions for separability under 

certain constraints. The inner/outer-loop join method is a nonseparable join method with respect to 

this separable set. The design algorithms will be extended to incorporate this join method in 

Chapter 4. We facilitate comprehension through a series of examples and by case analysis, using the 

cost model developed in Section 3.4. Observations resulting from this procedure are formalized and 

proved in Section 3.5.3. 

Our approach to physical database design is based on the premise that at execution time the query 

processor will choose the best processing method for a given query. We call this processor an 

optimizer. Since the behavior of the optimizer at execution time affects the physical database design 

critically, we investigate this issue and discuss how it is related to the design. 

We define the influence of the restriction on one relation to the number of tuples to be retrieved 

in the other relation participating in a join as the coupling effect (which is similar in concept to the 

feedback mentioned in [YAO 79]). Starting with a case in which coupling effects between relations 

are not considered, we then proceed to those cases in which they are included. 
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3.5.1 Cases without coupling effects 

Example 3.1: Figure 3-4 describes two relations Rx and R2 with their access configurations. 

Dashed lines (/) represent clustering indexes, the dotted lines (:) nonclustering indexes. Columns 

without either type of line have no indexes defined for them. We would like to find the best method 

of evaluation-which the optimizer would choose at query-processing time, for the following query: 

SELECT Ar A2, B2 

FROM    Rr R2 

WHERE RrA2 = 'a2' AND 

R2.B2 = 'b2' AND 

Ml = R2Bl 

A3    A2 Al 

JOIN 

Bl 

1   / 
1   / 
1   / 

h B3 

1          / 
1          / 
1          / 

:   1 
:   1 
:   1 

1 
1 
1 

Figure 3-4:    Relations Rx and R2. 

For this example only, it is also assumed that all the tuples in each relation participate in the join. 

Given these assumptions, the optimizer could try all the possible combinations of the join 

methods, evaluate the cost of each, and then select the one that costs the least. We have here the 

following combinations: 

Ri 

1. Join index method (partial) 

2. Sort-merge method (partial) 

3. Join index method (partial) 

4. Sort-merge method (partial) 

R2 

and     Join index method (partial) 

and Sort-merge method (partial) 

and Sort-merge method (partial) 

and     Join index method (partial) 

Using the cost model given in Section 3.4, the following formulas give the cost (number of block 
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accesses) for each of the four cases above.   In each formula the first and second bracketed 

expressions represent the cost of accessing relations Rr and R2 respectively. Bracketed expressions 

in the formulas are given arbitrary values for illustrative purposes. Those expressions whose form is 

identical are given the same value. 

Cost = [IA(IA2, Rx) + IS(IA1, Rx) + FA2 X nR1] + : 100 + 

[IA(IB2, R2) + IS(IB1, R2) + b(mR2, pR2, FB2 X nR2)] : 20       (3.1) 

Cost = [IA(IA2, Rx) + FA2 X mR1 + SORT(FA2 X HR1 X mR1)] + : 60 + 

[IA(IB2> R2) + b(mR2, PR2, FB2 X nR2) + SORT(Fß2 X HR2 X mR2)] : 50       (3.2) 

Cost = [IA(IA2, Rx) + IS(IA1, Rx) + FA2 X nR1] + *: 100 + 

[IA(IB2, R2) + b(mR2, pR2, FB2 X nR2) + SORT(FB2 X HR2 X mR2)] : 50       (3.3) 

Cost = [IA(IA2, Rx) + FA2 X mR1 + SORT(FA2 X HR1 X mR1)] + : 60 + 

[IA(IB2,R2) + IS(IB1,R2) + b(mR2,pR2,FB2XnR2)] : 20       (3.4) 

Here b(m,p,k) is a function that provides the number of block accesses, where k is the number of 

tuples to be retrieved in the order of TID values (TID order). An exact form of this function and 

various approximation formulas are summarized in Chapter 7. The function is approximately linear 

in k when k « n, and approaches m asymtotically as k becomes large.  A simple approximation 

suggested by Cardenas [CAR 75] is b(m,p,k) = m [1 - (l-l/p)k]. FA2 and Fß2 are the sclectivities 

of the columns RrA2 and R2-B2, respectively. In Equation (3.1), FA2 X nR1 and KmR2,pR2'FB2 * 

nR2) represent the numbers of blocks accessed that contain data tuples of relations Rx and R2, 

respectively.  Since retrieving tuples by scanning a nonclustering join index will access the tuples 

randomly, the same block will be accessed repeatedly if it contains more than one tuple. Therefore, 

one block access is needed to retrieve each tuple. Hence we get FA2 X nR1 for the number of data 

blocks fetched from relation Rr On the other hand, for relation R2, the join index is clustering and 

thus the tuples will be retrieved in TID order. Therefore, even though a block contains more than 

one tuple, each block will be fetched only once. We thus get b(mR2,pR2,Fß2 X nR2) for the number 

of data blocks fetched from R2, where Fß2 X nR2 is the number of tuples selected by the restriction. 
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In Equation (3.2), FA2 X mR1 and b(mR2,pR2,FB2 * nR2) represent the numbers of blocks 

accessed during the initial scan of the relation prior to sorting. Since the restriction index is 

clustering in relation Rr the initial scan through this restriction index will access F.2 X mR1 blocks. 

In relation R2, a nonclustering restriction index is used to access the relation initially. This 

restriction results in random distribution of TIDs of the qualified tuples over the blocks. Since these 

tuples are then accessed in TID order, the access cost is b(mR2,pR2,FB2 X nR2). 

The factor HR2 used in the Equation (3.3) represents the projection effect upon relation R2. Since 

the projection selects only part of the attributes from the relations, the tuple is usually smaller after 

projection. The cost of writing the final result is not included since it is the same regardless of the 

join method used. 

With the specific values of the access cost given, Equation (3.4) gives the minimum access cost. 

We note that the access costs for each relation do not depend on any parameter of any other relation, 

and that each part of the cost of Equation (3.4) becomes the local minimum. That is, the first part of 

the cost incurred by accessing relation 1^ is the minimum of the costs of the join methods used for 

Rj, while the second part is the minimum of those for R2. This implies that the optimizer can 

determine the optimal join method on one relation without regard to any properties of other 

relations. [END Example 3.1] 

The foregoing observation is extremely important because, if we can determine the optimal join 

method for one relation without regard to other relations, we can also determine the optimal access 

configuration for the relation without regard to other relations using the following procedure: 

1. Consider each possible access configuration for a relation in turn. 

2. Find the best join method of each transaction given the particular access configuration. 

3. Calculate the total cost for processing the transactions, using their expected frequency of 
occurrence. 

4. Repeat this procedure for all other possible access configurations, finally selecting the 
one that yields the minimal total cost. 
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The result of this will be to reduce the problem of designing an optimal access configuration of a 

database to the problem of designing access configurations of single relations. Therefore, local 

optimal solutions for individual relations constitute an optimal solution for the entire database. 

In Example 3.1 we considered only the cases without coupling effects. It will be shown, in the 

following discussion, that the problem is similarly reduced even when coupling effects are actually 

present Before further discussion, we need the following definition and example. 

Definition 3.1: The join selectivity J(R,JP) of a relation R with respect to a join path JP is the ratio 

of the number of distinct join column values of the tuples participating in the unconditional join to 

the total number of the distinct join column values of R. A join path is a set (RpR^.R^R^B), 

where R, and R, are relations participating in the join and RrA and R2.B are the join columns of Rj 

and R-, respectively. An unconditional join is a join in which the restrictions on either relation are 

not considered. D 

Definition 3.2: A connection is a join path predefined in the schema [WIE 79]. D 

Join selectivity is the same as the ratio of the number of tuples participating in the unconditional 

join to the total number of tuples in the relation (cardinality of the relation). Join selectivity is 

generally different in Rx and R2 with respect to a join path, as shown in the following example: 

Example 3.2: Let us assume that the two relations in Figure 3-5 have an 1-to-N partial- 

dependency relationship. Partial dependency means that every tuple in the relation R2 that is on the 

N-side of the relationship has a corresponding tuple in R^ but not vice versa [ELM 80]. Let us 

assume that 50% of the countries have at least one ship so that the tuples representing those 

countries participate in the unconditional join. Every tuple in the SHIPS relation (R2) participates 

in the unconditional join according to the partial dependency. The join selectivity of the 

COUNTRIES relation is then 0.5, while that of the SHIPS relation is 1.0. D 
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Rx        COUNTRIES(Countryname, Population) 

R2        SHIPS(ShipId, Country, Crewsize, Deadweight) 

Figure 3-5:  COUNTRIES and SHIPS Relations. 

3.5.2 Cases with coupling effects 

Let us investigate the four cases shown in Example 3.1-using the same query, join methods, and 

access configuration defined as in Figure 3-4, but now with coupling effects. In fact, we shall 

consider coupling effects throughout our subsequent discussions. We shall also assume that Rx and 

R2 have a 1-to-N relationship (1 for Rx and N for R2). 

Case 1: The join index method is applied to both relations ^ and R2. With coupling effect, the 

join will be performed as follows: If a tuple of relation Rx docs not satisfy the restriction predicate 

for R,, the corresponding tuples of R2 that have the same join column values are not accessed. 

Hence, we have the coupling effect from Rx to R2. If there are only index-processible predicates in 

the query to be evaluated, the situation is then symmetric-in the sense that, for the tuples in 

relation R2 that do not satisfy the restriction predicate for R2, the corresponding tuples of Rj^ are not 

accessed either. We have this symmetry because we can resolve all index-processible predicates by 

using TIDs only, without any need to access the data tuples themselves. 

Since both R,.A2 and R2-B2 have indexes defined for them, the restriction predicates in the 

WHERE clause are index-processible. Therefore, the cost of evaluating this query, including the 

coupling effect, will be as follows: 

Cost = [IACI^.R^ + IS(IA1,R1) + {<JX X b(l/FB1,FB1 X nR2, 

FB2 X nR2)/(l/Fm)> XFWX nR1}] + 

[IA(IB2,R2) + IS(IB1,R2) + b(mR2,pR2,{<J2 X FA2> X Fß2 X nR2»] 

Here Jx and J2 represent the join selectivity of relations Rx and R2, respectively, for the join path 

considered. Expressions in the braces represent the numbers of data tuples accessed in relations Rj^ 

26- 



CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS 

and R2, respectively. In the first part of the formula, the expression in the braces simultaneously 

represents the number of blocks accessed in relation Ry This follows the argument shown in 

Example 3.1. 

FB1 is the selectivity of column R2.B1 and 1/Fßl represents the number of groups2 of tuples that 

have the same join column values in relation R2~ which is essentially the same as the number of 

distinct join column values. 

The expression b(l/FB1,FB1 X nR2, Fß2 X nR2) represents the number of groups selected by 

restriction Fß2. Although the b function estimates the number of block accesses in which a certain 

number of tuples are randomly selected, the same function is used for estimating the number of 

logical groups selected-if the latter are assumed to be of uniform size. Note that the clustering or 

nonclustering of tuples in a group is irrelevant. The product Fßl X nR2 , the number of tuples in 

one logical group, plays a role similar to that of the blocking factor. 

The expression b(l/Fßl, Fßl X nR2, Fß2 X nR2)/(l/Fßl) represents the ratio of the number of 

groups selected by restriction Fß2 to the total number of groups in relation R2. Since every tuple 

participating in the unconditional join in R1 has a unique join column value and, accordingly, 

exactly one corresponding group in R2 (let us recall that Rj is on the 1-side of the 1-to-N 

relationship), this ratio correctly represents a special restriction upon Rx caused by the coupling 

effect originating in R2. 

In the second part of the cost formula, we simply use FA2 to represent the coupling effect directed 

from R, to R,. Since in R, every tuple has a unique join column value, if a tuple is selected 

according to the restriction, the corresponding group in R2 that has the same join column value (if it 

exists) will be selected on the basis of this special restriction resulting from the coupling effect 

2 
Group here is very close in concept to set occurrence in CODASYL-type databases. 
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Hence, F., represents the ratio of the number of groups selected as a consequence of the coupling 

effect to the total number of groups in R2 participating in the unconditional join. That ratio, in turn, 

has the same value as the ratio of tuples, selected according to the coupling effect, to the total 

number of tuples participating in the unconditional join in R2. D 

The coupling effect is formally defined as follows: 

Definition 3.3: The coupling effect from relation Rx to relation R2, with respect to a transaction, is 

the ratio of the number of distinct join column values of the records of Rr selected according to the 

restriction predicate for R,, to the total number of distinct join column values in Rr D 

If we assume that the join column values are randomly selected, the coupling effect from Rx to R2 

is the same as the ratio of the number of distinct join column values of R2 selected by the effect of 

the restriction predicate for R, to the number of distinct join column values in R2 participating in 

the unconditional join. 

Definition 3.4: A coupling factor Cf,2 from relation R, to relation R2, with respect to a transaction, 

is the ratio of the number of distinct join column values of R2, selected by both the coupling effect 

from R, (through the restriction predicate for Rj) and the join selectivity of R2, to the total number 

of distinct join column values in R2. D 

According to the definition, a coupling factor can be obtained by multiplying the coupling effect 

from R, to R2 by the join selectivity of R2. This coupling factor contains all the consequences of the 

interactions of relations in the join operation, since it includes both coupling and join filtering 

effects. Let us note that, although the coupling factor can be obtained in any case, it does not always 

contribute to the reduction of the tuples to be retrieved. We will see an example of this in Case 2 

below. A coupling factor is said to be effective if the coupling effect actually contributes to the 

reduction of the tuples to be retrieved. In Case 1, the expressions in angle brackets represent the 

coupling factors from R2 to R1 and from Rx to R2, respectively. Hence, 
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^*12 =   2 *    A2' 

Cfn = Jx X b(l/FB1, Fm X nR2, FB2 X nR2)/(l/FB1). 

One important observation here is that the coupling factors do not depend on the specific access 

structures present in either relation, nor on the specific join method selected, but rather (and solely) 

depend on the restriction and the data characteristics. Such characteristics include the side the 

relation is on in the 1-to-N relationship, the average number of tuples in one group, and the join 

selectivity-which will be known before we start the design phase. 

Now let us investigate the remaining cases in which coupling effects are present between relations. 

Case 2: The sort-merge join method is applied to both relations, in the same situation as in Figure 

3-4. The cost formula is then as follows: 

Cost = pAd^Rj) + FA2 X mR1 + SORT(FA2 X HR1 X mR1)] 

+ [IA(IB2,R2) + b(mR2,pR2,FB2 X nR2) + SORT(Fß2 X HR2 X mR2)] ■ 

It will be noted that the coupling factors do not appear in the cost formula. This is because, when 

the sort-merge join method is used, an initial scan and the sort are performed before the join is 

resolved; indexes are not used any more while the join is being actually resolved, since the relation 

scan is performed upon the sorted temporary relations. The coupling effect can arise only when the 

join is being actually resolved and only when the join index is used. Thus, the coupling factor is not 

effective in this case. 

Case 3: The sort-merge join method is used for Rp the join index method for R2—in the same 

situation as in Figure 3-4. The join will be performed as described in Section 3.3, under the heading 

"Combination of the Join Index Method and the Sort-Merge Method."   Note that the coupling 

factor is effective from R, to R2, but not from R2 to Rr Thus, we obtain the following cost formula: 

Cost = pAa^Rj) + FA2 X mR1 + SORT(FA2 X HR X mR1)] 

+ [IA(IB2,R2) + IS(IB1,R2) + b(mR2,pR2,Cf12 X Fß2 X nR2)] 
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Case 4: The join index method is used on Rp the sort-merge method on R2~in the same 

situation as in Figure 3-4. We obtain the following cost formula: 

Cost = [IAd^R^ + ISd^Ri) + Cf21 X FA2 X nR1] 

-I- [IA(IB2,R2) + b(mR2,PR2,FB2 X nR2) + SORT(Fß2 X HR2 X mR2)] 

In all the cases above we note that the access cost for each relation is independent of any 

parameter of the other relation. Thus, when the optimizer chooses the least costly join methods, it 

can compare the costs for only one relation at a time. 

3.5.3 Formalization 

So far, we have discussed the property of separability for relational systems through a series of 

examples and case analyses. The ideas involved are now formalized. To begin with, we rephrase the 

definitions and the theorem presented in Chapter 2 to make them specifically suitable for relational 

systems. 

Definition 3.5: The procedure of designing the optimal access configuration of a database is 

separable if it can be decomposed into the tasks of designing the optimal configurations of individual 

relations independently of one another. D 

Definition 3.6: A partial-join cost is that part of the join cost that represents the accessing of only 

one relation, as well as the auxiliary structures defined for that relation. D 

Definition 3.7: A partial-join algorithm is a conceptual division of the algorithm of a join method 

whose processing cost is a partial-join cost. D 

Theorem 3.1: The procedure of designing the optimal access configuration of a database is 

separable if the following conditions are satisfied: 

1. A partial-join cost for relation R can be determined regardless of the partial-join 
algorithm used and the access configuration defined for Other(R). 

2. A partial-join algorithm can be chosen for R regardless of the partial-join algorithm used 
and the access configuration defined for Other(R). D 
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Additionally, we need the following definitions: 

Definition 3.8: The partial coupling effect from relation R1 to relation R2, with respect to each 

transaction, is the ratio of the number of distinct join column values of the tuples of Rr selected 

according to the index-processible predicate for Rr to the total number of distinct join column 

values in Rr D 

Definition 3.9: A partial coupling factor PCf12 from relation R1 to relation R2 with respect to a 

transaction is the ratio of the number of distinct join column values of R2, selected by both the 

partial coupling effect from Rx (through the restriction predicate for R^ and the join selectivity of 

R2, to the total number of distinct join column values in R2. D 

Definition 3.10: The restricted set of relation R with respect to a transaction is the set of tuples of 

R selected according to the restriction predicate for R. D 

Definition 3.11: The partially restricted set of relation R with respect to a transaction is the set of 

tuples of R selected according to the index-processible predicate for R. D 

Definition 3.12: The coupled set of relation Rx with respect to a transaction is the set of tuples in 

R, selected according to the coupling factor from R2. D 

Definition 3.13: The partially coupled set of relation Rx with respect to a transaction is the set of 

tuples of R, selected according to the partial coupling factor from R2. D 

Definition 3.14: The result set of relation R with respect to a transaction is the intersection of the 

restricted set and the coupled set. Thus, the tuples in the result set satisfy all the predicates. □ 

Definition 3.10 to Definition 3.14 define various subsets of the relation according to the predicates 

they satisfy. In Figure 3-6 these subsets are graphically illustrated. Cardinalities of subsets of 

relation R.^ can be obtained as follows: 
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Figure 3-6:  Various Subsets of a Relation. 
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[restricted set| = nR X Selectivity of the restriction predicate 

Ipartially restricted set|    =n„ X Selectivity of the index-processible predicate 
Ki 

|coupled set| = nR X Cf21 

Ipartially coupled set|      = nR X PCf21 

Iresult set| = nR X Cf21 X Selectivity of the restriction predicate 

Using all the definitions and the theorem above, we prove the following theorem that shows the 

separability of a relational system. 

Theorem 3.2: The set of join methods consisting of the join index method, the sort-merge 

method, and the combination method satisfies the conditions for separability under the constraint 

that, whenever the join index method is used for both relations, at least one relation must have 

indexes for all restriction columns. 

Proof: In the set of join methods considered, there are two partial-join algorithms: the join index 

method (partial) and the sort-merge method (partial). Since these two can be arbitrarily combined 

to form a join method, Condition 2 for separability is satisfied. For Condition 1 of separability we 

prove that each of the three sufficient conditions is satisfied as follows: 

Condition 1.1: We prove that the first condition is satisfied by showing that the following 

statements are true: 

1. If the sort-merge method is used, the set of records in R that are accessed is the 
restricted/partially restricted set 

2. If the join index method is used, the set of records in R that are accessed is the 
intersection of restricted/partially restricted set and the coupled set 

Then, we know the set of records of R accessed is independent of the access structures of and the 

join methods used for Other(R) because the restricted/partially restricted set can be completely 

determined by local parameters of relation R, and the coupled set can be determined by the 

coupling effect and the join-filtering effect which are independent of the access structures of 

Othcr(R) and the partial-join algorithms used for Other(R). 
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Now, let us investigate each of the two statements. First, when the sort-merge method is used, it 

follows directly from the definition of this join method that the partially restrictive set will be 

accessed if there are residual predicates; the restricted set will be accessed otherwise. Second, when 

the join index method is used, the optimizer will access the indexes of the relation (say R) having 

indexes for all restriction columns first. Since the predicates for R are entirely resolved by using 

indexes, coupling factor is effective in Other(R). The data records of Other(R) will subsequently be 

accessed and the predicates for Other(R) are entirely resolved before accessing records of R. Thus, 

coupling factor is also effective in R. Since full-not p'artial-coupling factors are effective in both 

relations, the records to be accessed are in the coupled set These tuples are also in the 

restricted/partially restricted set because the index-processible predicate is resolved by using indexes 

before data tuples are accessed. 

Let us note that, if the optimizer accesses the indexes of Other(R) first, then only partial coupling 

factor is effective in R. But, because this will always cost more than the previous method, the 

optimizer will always choose the previous one. 

Condition 1.2: The order of accessing those tuples is always the join column value order 

regardless of the access structures and partial-join algorithms used. 

Condition 1.3: Since we assumed that a block contains tuples of only one relation, tuples of a 

relation cannot interfere with the placement of tuples of other relations. Q.E.D. 

3.5.4 Separability in cases where arbitrary indexes are missing 

The set of join methods in Theorem 3.2 does not have the separability property if, for any 

transaction, some restriction indexes are missing in both relations. Example 3.3 further illustrates 

this point 

Example 3.3: Let us assume that the join index method is used for both Rx and R2, in the same 
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situation as in Figure 3-4, but that-now restriction indexes for both R2 and R2 are missing. In this 

situation, since there are no restriction indexes, there is no way of resolving the restriction predicate 

without accessing the tuples themselves. Therefore, if we access relation Rx first, the access cost 

would be 

Costl = [ISa^R^ + PCf21 X nR1] + [IS(IB1,R2) + b(mR2,pR2,Cf12 X nR2)] 

On the other hand, if we access relation R2 first, the access cost would then be 

Cost2 = [IS(IA1,R1) + Cf21 X nR1] + [IS(Ißl,R2) + b(mR2,pR2,PCf12 X nR2)] 

Here, PCf21=J, and PCf12=J2 since there are no restriction indexes in both Rx and R2. In 

general, if some restriction indexes are missing in both relations, the coupling factor is effective in 

one relation while the partial coupling factor is effective in the other relation. The choice depends 

on which relation is to be accessed first. The optimizer will choose the one that makes the join cost 

cheaper at run time based on the access configurations of both relations. Since this choice depends 

on the access configurations of both relations, the design is not separable.D 

What's implied in the optimal design of the physical database is that those indexes that do not 

compensate for their maintenance and access costs should not be included in the result. Since 

Theorem 3.2 requires the existence of all the restriction indexes in at least one relation for each 

two-variable transaction, we can inevitably expect that, for some transactions, this constraint is not 

met during the decision process. In this situation calculation of the cost is no longer separable. 

Nevertheless, the error caused by the assumption of separability should not be significant because 

the restriction indexes for both relations that have been dropped must be relatively 

insignificant-otherwise, the indexes would not have been dropped. 
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3.5.5 Update cost 

We assume here that updates are performed only on individual relations, although the 

qualification part (WHERE clause) may involve more than one relation. Thus, updates are not 

performed on the join of two or more relations. 

Imagine that the qualification part—which can be treated as a query— is segregated. Then, the 

remaining part-update operation—depends only on the local parameters of the relation to be 

updated and on the coupling factor because the update operation should only occur after all the 

predicates are resolved. When processing the qualification part, there are some restrictions as 

explained in Section 3.3.2. The restriction, however, is independent of the access" structures or 

partial-join algorithms of other relations. Thus, separability can also be applied to the update 

transactions as well. 

3.6 Summary 

The theory of separability has been investigated in the context of relational database systems. In 

particular, it has been shown that the set of join methods consisting of the join index method, the 

sort-merge method, and the combination method has the property of separability. The implication 

is that, if the database system supports only this set of join methods, the physical database can be 

designed relation by relation independently of one another. 

-36 



CHAPTER 4.    PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES 

4. Physical Design Algorithms for Multifile 
Relational Databases 

4.1 Introduction 

In this chapter and Appendix D an algorithm for the optimal physical design of multifile 

databases will be presented. Appendix D contains detailed experimental data for the validation of 

the algorithm. This algorithm exploits the property of separability so that the entire design is 

partitioned into the designs of individual relations. The scheme is extended, using heuristics, to 

include the inner/outer-loop join method which cannot be incorporated by the theory of 

separability. The design of a single relation can still be a very complex problem. Thus, other 

heuristics are employed to further reduce the complexity of this design process. 

In Section 4.2 the design algorithm is described in detail. Its time complexity is investigated in 

Section 4.3. Validation of the heuristics involved in the algorithm is briefly explained in Section 4.4. 

4.2 Design Algorithm 

The design algorithm is schematically illustrated in Figure 4-1. 

The input information for and the output results from the design algorithm are described below: 

Input: 

• Usage information: A set of various queries and update transactions with their 
frequencies. 

• Data Characteristics: The logical schema including connections; (for each relation in the 
database) cardinality, blocking factor, index blocking factors and selcctivities of all 
columns, relationships with respect to connections, join selcctivities with respect to 
connections. 

• Derived inputs: Coupling factors with respect to individual two-variable transactions. 
(These are derived from the data characteristics and the restriction predicates in the 
transactions.) 
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Output: 

I 
-V- 

Phase 1 

|    Index Selection    | 

I 

|   Clustering Design   | 

 1-- 

Relation by Relation 

{Join Index Method 
Sort-Merge Method 
Combination Method} 

Phase 2 

|  Resolve Inner/Outer-Loop Join   | 

I 

I Perturbation I 

Entire Database 

{All Join Methods) 

Figure 4-1:  Algorithm 1 for the Optimal Design of Physical Databases. 

• The optimal access configuration of the database, which consists of the optimal position 
of the clustering column and the optimal index set for each relation. 

• The optimal join method for each two-variable transaction. 

ALGORITHM 1 

The design is performed in two phases: Phase 1 and Phase 2. These two phases are iterated until 

the refinement through the loop becomes negligible (say <1%). In Phase 1, based on the theory of 

separability, the access configuration is designed relation by relation independently of one another 

using only the join methods in the separable set- the join index method, the sort-merge method, 
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and the combination method. Phase 1 is further divided into two steps: the Index Selection Step 

and the Clustering Design Step. In the Index Selection Step an optimal index set is chosen given the 

clustering column position determined in the Clustering Design Step of the last iteration. (Initially, 

in the first iteration, there is no clustering column.) In the Clustering Design Step, an optimal 

clustering column position is chosen given the index set determined in the Index Selection Step. 

Before introducing the details for these steps, we define the function EVALCOST-1 as follows: 

Function EVALCOST-1 

Input: 

• Access configuration of the relation being considered. 

• Set of transactions that are to be processed in Phase 1 using the inner/outer-loop join 
method and the direction of the join for each transaction in the set (These transactions 
are identified in Phase 2 of the previous iteration.) 

Output: 

• Total cost of the relation. 

(In the input specification of this function as well as the functions or algorithms introduced later, the 

global input information introduced at the beginning of this section is implicitly assumed unless 

stated otherwise.) 

The total cost of a relation is obtained by summing up the costs of single-relation transactions and 

the partial-join costs of two-relation transactions that refer to the relation. The cost of each 

transaction must be multiplied by its frequency. For each partial-join, the best partial-join algorithm 

is selected and its cost calculated. However, if the transaction is supposed to be processed by the 

inner/outer-loop join method according to the input information, that method will be used 

unconditionally according to the join direction specified because the inner/outer-loop join method 

cannot be treated uniformly with separable join methods in Phase 1 due to its nonseparable nature. 
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Using the function EVALCOST-1 defined above, the algorithm for index selection is described as 

follows: 

Index Selection Step 

Input: 

• Clustering column position for each relation 

• Set of transactions that are to be processed using the inner/outer-loop join method and 
the direction of the join for each transaction in the set 

Output: 

• The optimal index set for each relation with respect to the input information. 

Algorithm: 

1. Pick one relation and start with an access configuration having a full index set 

2. Try to drop one index at a time and apply EVALCOST-1 to the resulting access 
configuration to find the index that yields the maximum cost benefit when dropped. 

3. Drop that index. 

4. Repeat Steps 2 and 3 until there is no further reduction in the cost 

5. Try to drop two indexes at a time and apply EVALCOST-1 to the resulting access 
configuration to find the index pair that yields the maximum cost benefit when dropped. 

6. Drop that pair. 

7. Repeat Steps 5 and 6 until there is no further reduction in the cost 

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be 
predefined) indexes at a time. 

9. Repeat the entire procedure for every relation in the database. 

The variable k, the maximum number of indexes that are dropped together at a time, must be 

supplied to the algorithm by the user. According to the results of the experiments, however, k=2 

suffices in most practical cases. 
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The index selection algorithm presented here bears some resemblance to the one introduced by 

Hammer and Chan [HAM 76], but it uses the Drop Heuristic [FEL 66] instead of the ADD Heuristic 

[KUE 63]. The Drop Heuristic attempts to obtain an optimal solution by incrementally dropping 

indexes starting with a full index set On the other hand, the ADD Heuristic adds indexes 

incrementally starting from an initial configuration without any index to reach an optimal solution. 

Since we are pursuing a heuristic approach (DROP heuristic) for index selection, the actual result is 

suboptimal. An experimental study in Appendix F shows that the algorithm finds optimal solutions 

in most of the cases. 

The Clustering Design Step comes next in Phase 1. 

Clustering Design Step 

Input: 

• Index set for each relation determined in the Index Selection Step. 

• Set of transactions that are to be processed using the inner/outer-loop join method, and 
the directions of the join for each transaction in the set. 

Output: 

• Optimal position of the clustering column for each relation with respect to the input 
information. 

Algorithm: 

1. Select one relation. 

2. Assign the clustering property to one column of the relation. 

3. Apply EVALCOST-1 to the resulting access configuration. 

4. Shift the clustering property to another column of the relation and repeat Steps 2 and 3. 

5. Repeat Step 4 until all the columns of the relation have been considered, including the 
configuration having no clustering column is also considered. Then determine the one 
that gives the minimal cost as the clustering column (or none). 
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In Substep 2 the clustering property accompanies an index if the column has not been assigned 

one in the Index Selection Step. This strategy slightly enhances the accuracy of the design 

algorithms. More details on this strategy as well as other strategies enhancing the accuracy can be 

found in Appendix J.l. 

The clustering design algorithm amounts to an enumeration of all possible alternatives. However, 

because of the restriction that a relation can have at most one clustering column, the time complexity 

is only linear on the number of columns in the relation. When a virtual column is involved, there 

could be more than one clustering column in a relation since the first component column of a virtual 

column that is clustering is itself a clustering column. But, since the two columns are tightly 

interlocked, the time complexity is still linear on the number of columns (now including virtual 

columns) in the relation. 

In Phase 2 the design algorithm is extended to include the inner/outer-loop join method. Since 

the inner/outer-loop join method is nonseparable, it cannot be incorporated in Phase 1. Instead, a 

separate step (Resolve Inner/Outer-Loop Join Step) is attached to take a corrective action. Given 

the access configuration from Phase 1, for each two-relation transaction, the best join method is 

selected. If the inner/outer-loop join method happens to be the best one, it is remembered that the 

transaction be processed by the inner/outer-loop join method in Phase 1 of the next iteration. Also 

remembered is the direction of the join. To describe the algorithm for the Resolve Inner/Outer- 

Loop Join Step, we define the function EVALCOST-2. 

Function EVALCOST-2 

Input: 

• Access configuration of the entire database. 

Output: 
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• Total cost of the database. 

Side Effect: 

• Two-relation transactions that use the inner/outer-loop join method are marked, and 
their join directions recorded. 

The total cost of the database is obtained by summing up the costs of all transactions multiplied 

by their respective frequencies. For each two-relation transaction, the best join method (including 

the inner/outer-loop join method) is selected and its cost calculated. As a side effect, if the best join 

method for a transaction is the inner/outer-loop join method, a reminder is attached to the 

transaction that it must be processed by the inner/outer-loop join method in Phase 1 of the next 

iteration. This reminder is one of the elements that interfaces Phase 1 and Phase 2 conveying 

information from one phase to another. 

The following is the algorithm for Resolve Inner/Outer-Loop Join Step: 

Resolve Inner/Outer-Loop Join Step 

Input: 

• The access configuration of the database produced by Phase 1. 

Output: 

• Set of transactions to be processed by the inner/outer-loop join method and the 
direction of the join for each transaction in the seL 

Algorithm: 

1. Apply EVALCOST-2 once. The desired output will be obtained by the side effects of 
EVALCOST-2. 

The second step of Phase 2 is the Perturbation Step. This step eliminates snags in the design 

process which may be incurred by some anomalies. 
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One anomaly is due to the peculiar characteristics of update transactions; that is, in processing an 

update transaction, the join index always remains after Phase 1 during the first iteration because the 

join index method is the only one available to resolve the join predicate for the relation being 

updated. (The sort-merge method is not allowed for the relation to be updated; the inner/outer-loop 

join method cannot be used in Phase 1 of the first iteration.) A problem arises in the Resolve 

Inner/Outer-Loop Join Step when the inner/outer-loop join is costlier than the join index method, 

but less costly if the maintenance (update) cost of the join index is incorporated. In this situation it 

would be more beneficial to use the inner/outer-loop join method and drop the join index. But, 

since the Inner/Outer-Loop Join Step does not incorporate the index maintenance cost, the 

algorithm finds the join index method less costly and lets the join index stay. Hence, we may never 

have a chance to drop the index. Simply adding the maintenance cost to that of the join index 

method will not work since the maintenance cost of an index must be shared by all transactions 

accessing that index. Therefore, in the Perturbation step, we try to drop the join index and compare 

the total transaction processing costs before and after the change. If the change proves to be 

beneficial, the join index is actually dropped. 

Another anomaly occurs because we consider the inner/outer-loop join method separately from 

the other join methods. Sometimes the presence of an index favors performing the inner/outer-loop 

join in a certain direction. Dropping that index and reversing the direction of the inner/outer-loop 

join, however, may be more beneficial. But, it is impossible to consider this alternative in the 

Inner/Outer-Loop Join Step since that step is not allowed to change the access configuration. To 

solve this problem, in the Perturbation Step, we also try to drop an arbitrary index (as well as join 

indexes) and make the change permanent if it reduces the cost. 

We generalize this concept and try to addan index as well as to drop one. Here, the algorithm for 

the Perturbation Step of Algorithm 1 follows: 

Perturbation Step 
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Input: 

• Access configuration produced by Phase 1. 

• Total cost of the database obtained in the Inner/Outer-Loop Join Step. 

Output: 

• Modified access configuration of the database. 

Algorithm: 

1. Pick a column in the database. Try to drop the index if the column has one; otherwise 
add one. 

2. Obtain the total cost of the database using EVALCOST-2. If the change reduces the 
cost, make it permanent. 

3. Repeat Steps 1 and 2 for every column in the database. 

We note that the Perturbation Step is supposed to accomplish a minor revision in the current 

access configuration to eliminate the snags that obstruct a smooth flow of the design process. Thus, 

only a small number of columns will be affected by the Perturbation Step; the affected columns 

must be sparsely scattered, and relatively independent of one another. Accordingly, dropping or 

adding two or more indexes together is excluded from consideration. For the same reason, an 

arbitrary order is chosen in considering the columns. 

4.3 Time Complexity of the Design Algorithm 

The time complexity is estimated in terms of the number of calls to the cost evaluator 

(EVALCOST-1 or EVALCOST-2) which is the costliest operation in the design process. The overall 

time complexity of Algorithm 1 is 0(tXvk+1) + O(tXc), where t is the number of transactions 

specified in the usage information, v the average number of columns in a relation, c the number of 

columns in the entire database, and k the maximum number of columns considered together in the 

Index Selection Step. Phase 1 contributes to the first term in the complexity; Phase 2 to the second. 
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Among the two design steps in Phase 1, the Clustering Design Step has a time complexity O(tXv) 

which is dominated by that of the Index Selection Step. In the Index Selection Step EVALCOST-1 

is called for every k-combination of columns of the relation being considered and for every 

transaction that refers to the relation. This contributes the order of (s/r)XtXvk, where r is the 

number of relations in the database and s is the average number of relations that a transaction refers 

to. (Thus, (s/r) represents the average ratio of the number of transactions referring to a particular 

relation to the total number of transactions.) This procedure is repeated until there is no further 

reduction in the cost (the number of repetitions is proportional to v). Since the entire procedure is 

If 4-1 repeated for every relation, the overall time complexity of Phase 1 is 0(tXv ) if we assume that s 

is relatively fixed. More detailed derivation of the time complexity of the Index Selection Step can 

be found in Appendix D. 

In Phase 2, the Resolve Inner/Outer-Loop Join Step requires only one call to EVALCOST-2; 

thus, it is dominated by the Perturbation Step. The Perturbation Step calls EVALCOST-2 for every 

column in the database and for every transaction in the usage. As a result, the time complexity of 

this step is O(tXc). Let us note that if v, the average number of columns in a relation, is relatively 

fixed, the time complexity of Algorithm 1 is linear on c, the total number of columns in the database. 

Let us note that Algorithm 1 achieves a substantial improvement in time complexity compared 

with the exhaustive-search method whose time complexity is 0(tX(v + l)rX2c). Here, the factor 

(v+l)r is the total number of clustering configurations since the clustering column could be any one 

of v columns of a relation or there could be no clustering column at all. The factor 2C is the total 

number of index configurations since each of c columns in the database can either have an index or 

not. 

-46- 



CHAPTER 4.    PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES 

4.4 Validation of Design Algorithms 

An important task in developing a heuristic algorithm is its validation. Because physical database 

design is such a complex problem, finding mathematical worst-case bounds on the deviations from 

the optimality (we shall simply call them deviations) of the solutions produced by the heuristic 

algorithm is almost impossible. Consequently, we have to rely on empirical test results of the 

algorithm for its validation. A simple method would be to compare the heuristic solutions with the 

optimal ones for various input situations. In many cases, however, identifying the optimal solution 

itself is a difficult, often impossible, task. For simple situations optimal solutions can be obtained by 

exhaustively searching through all the possible alternatives. For more complex situations, however, 

an exhaustive-search is practically prohibited by its exponentially increasing complexity. 

One alternative method for validating a heuristic algorithm in these complex cases is to devise 

different heuristic algorithms and compare their solutions. If these solutions are identical, we 

conclude that they are very likely to be optimal, for it is very unlikely that different heuristics can 

cause exactly the same deviations from the optimal solution. Thus, for this purpose, two additional 

design algorithms (see Figures 4-2 and 4-3) are proposed. The two algorithms are derived from 

Algorithm 1 introducing variations that help validate heuristics involved. We first introduce the 

algorithms and then compare them for the purpose of validation. 

ALGORITHM 2 

Algorithm 2 is almost identical to Algorithm 1 except that the two steps in Phase 1 are combined 

in one design step: the Combined Index Selection and Clustering Design Step (Combined Step). 

The algorithm is described below: 

Combined Step 

Input: 
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Phase 1 

| Combined Index Selection! 
j & Clustering Design    | 

Relation by Relation 

{Join Index Method 
Sort-Merge Method 
Combination Method} 

Phase 2 

|    Resolve Inner/Outer-Loop Join 

I 
Entire Database 

{All Join Methods} 

Figure 4-2:  Algorithm 2 for the Optimal Design of Physical Databases. 

NS Index Selection 
- Entire Database 
| {All Join Methods} 

NS Clustering Design 
- Entire Database 
| {All Join Methods} 

Figure 4-3:  Algorithm 3 for the Optimal Design of Physical Databases. 

• Set of transactions that are to be processed using the inner/outer-loop join method and 
the direction of the join for each transaction in the set 
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Output: 

• Optimal access configuration for each relation with respect to the input information. 

Algorithm: 

1. For each clustering column position in a relation, perform index selection as defined in 

Algorithm 1. 

2. Save the best configuration. 

ALGORITHM 3 

Algorithm 3 is different from Algorithms 1 and 2 in that it does not rely on the property of 

separability. This algorithm has a much higher time complexity compared with the two previous 

algorithms (see Appendix D). The algorithm consists of one phase which, in turn, is decomposed 

into two steps: the NS Index Selection Step and the NS Clustering Design Step (the prefix NS 

stands for "nonseparable"). The two steps design the access configuration of the entire database all 

together rather than relation by relation. All available join methods are incorporated. The 

algorithms are described below: 

NS Index Selection Step 

Input: 

• Clustering column positions determined in the NS Clustering Design Step of the last 
iteration. 

Output: 

• Optimal index set of entire database with respect to the given clustering column 
positions. 

Algorithm: 

1. Identical to the Index Selection Step except that the index set is designed for the entire 
database at the same time and using the function EVALCOST-2. 
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NS Clustering Design Step 

Input: 

• Index set of the database determined in the NS Index Selection Step. 

Output: 

• Optimal positions of the clustering columns with respect to the given index set 

Algorithm: 

1. Start with an access configuration having no clustering columns. 

2. Try to assign the clustering property to one column in the database at a time. Applying 
EVALCOST-2, find the column that yields the maximum cost benefit. 

3. Assign the clustering property to that column. 

4. Repeat Steps 2 and 3 with the constraint that one relation can have at most one 
clustering column until there is no further reduction in the cost. 

5. Starting with the access configuration from Step 4, try to assign the clustering property to 
two columns in the database at a time. One relation can have at most one clustering 
column. Applying EVALCOST-2, find the pair that yields the maximum cost benefit. 

6. Assign the clustering property to that pair. 

7. Repeat Steps 5 and 6 until there is no reduction in the cost. 

8. Repeat Steps 5, 6, and 7 with three columns, four columns,..., up to k columns (k must 
be predefined) at a time. 

The two algorithms are used for the validation of heuristics as follows. Algorithm 2 combines the 

two steps in Phase 1 into one design step. Thus, the heuristic of separating two steps in Algorithm 1 

can be validated by comparing the solutions from Algorithms 1 and 2. Similarly, since Algorithm 3 

does not exploit the property of separability, the inner/outer-loop join can be incorporated in Phase 

1, and Phase 2 is no longer necessary. Thus, the heuristic involved to incorporate the inner/outer- 

loop join method in Algorithm 1 can be validated by comparing the solutions of Algorithms 1 and 3. 

Experimental studies for validation of the physical design algorithms can be found in Appendix D. 
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Another heuristic employed in all Algorithms is that of index selection. Since the DROP index 

selection heuristic is used in three algorithms in common, it cannot be validated by comparing these 

algorithms. Instead, since index selection is a relatively independent submodule in physical design 

algorithms, it can be validated separately from the other part of the design algorithms. With 

reasonably sized input situations, the exhaustive-search method is feasible to find the optimal 

solutions for this problem. Experimental studies for validation of index selection heuristic can be 

found in Appendix F. 

4.5 Summary 

An algorithm for the optimal design of multifile physical databases has been presented. This 

algorithm is based on the theory of separability and is heuristically extended to include the 

inner/outer-loop join method which is a nonseparable join method. Other nonseparable join 

methods, if available, can be incorporated similarly. The time complexity of this algorithm shows a 

significant improvement compared with that of the exhaustive-search method. 

Two additional algorithms have been proposed for the validation of heuristics employed in the 

design algorithm. The validation can be performed by comparing the solutions of three algorithms 

that utilize different heuristics. 
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5. Index Selection 

5.1 Introduction 

We consider here and in Appendix F the problem of selecting a set of indexes that minimizes the 

transaction-processing cost in relational databases. Appendix F contains detailed experimental data 

and their analysis. Index selection is an interesting and well-defined subproblem of the access 

structure selection problem. For this reason, we isolate this problem from the rest of the access 

structure selection problem and concentrate on its own aspects. 

Although there has been a considerable effort in the development of algorithms for index 

selection, most research in the past has concentrated on single-file cases. Furthermore, most of them 

addressed only secondary index selection, and incorporation of the primary structure (the clustering 

property) of the file has remained to be solved. In this chapter we develop an index selection 

algorithm with a reasonable efficiency that can be extended to multiple-file databases as well as 

extended to incorporate the clustering property. 

We begin in Section 5.2 with the index selection algorithm for single-file databases without the 

clustering property. This algorithm is extended in Section 5.3 to incorporate the clustering property. 

An extension to the multiple-file environments is discussed in Section 5.4. 

5.2 Index Selection for Single-File Databases 

ALGORITHM 4 

Input: 

• Usage information: A set of various queries and update, insertion, deletion transactions 
with their relative frequencies. 

• Data characteristics: Relation cardinality, blocking factor, selectivities and index 
blocking factors of all columns. 
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Output: 

• The optimal (or suboptimal) index set 

Algorithm: 

1. Start with a full index set 

2. Try to drop one index at a time and, applying the cost evaluator, obtain the total 
transaction-processing cost to find the index that yields the maximum cost benefit when 
dropped. 

3. Drop that index. 

4. Repeat Steps 2 and 3 until there is no further reduction in the cost. 

5. Try to drop two indexes at a time and, applying the cost evaluator, obtain the total 
transaction-processing cost to find the index pair that yields the maximum cost benefit 
when dropped. 

6. Drop that pair. 

7. Repeat Steps 5 and 6 until there is no further reduction in the cost. 

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be 
predefined) indexes at a time. 

The variable k, the maximum number of indexes that are dropped together at a time, must be 

supplied to the algorithm by the user. According to the results of the experiments, however, k=2 

suffices in most practical cases. 

The algorithm presented bears some resemblance to the one introduced by Hammer and Chan 

[HAM 76], but with one major modification: the DROP heuristic [FEL 66] is employed instead of 

the ADD heuristic [KUE 63]. The DROP heuristic attempts to obtain an optimal solution by 

incrementally dropping indexes starting from a full index set. On the other hand, the ADD heuristic 

adds indexes incrementally starting from an initial configuration without any index to reach an 

optimal solution. An experimental study in Appendix F shows that the solutions generated by the 

DROP heuristic are close to the optimal in many practical situations.   It also indicates that the 
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DROP heuristic performs better than ADD heuristic. The following argument provides one 

possible reason for this result In the ADD heuristic, when the first index is added, the cost changes 

drastically causing an abrupt change in the design process. In the DROP heuristic, however, 

dropping indexes causes a smooth transition in the design process since dropping one index does not 

make a big change in the cost due to the compensating effect of the other existing indexes. 

Advantages of the DROP heuristic over the ADD heuristic in the warehouse location problem are 

summarized in [FEL 66]. 

The time complexity of the algorithm is 0(gXvk+1), where g is the number of transactions 

specified in the usage information, v the number of columns in the relation, and k the maximum 

number of columns considered together in the algorithm. The time complexity is estimated in terms 

of the number of calls to the cost evaluator which is the costliest operation in the design process. In 

the algorithm the cost evaluator is called for every k-combination of columns of the relation, and for 

every transaction in the usage information. This contributes the order of gXvk. The procedure is 

repeated until there is no further reduction in the cost. Since the number of repetitions is 

proportional to v, the overall time complexity is 0(gX vk+1). 

5.3 Index Selection when the Clustering Column Exists 

Incorporation of the clustering property to the index selection algorithm is straightforward. Two 

algorithms for this extension are presented below: 

ALGORITHM 5 

1. For each possible clustering column in the relation perform index selection. 

2. Save the best configuration. 

ALGORITHM 6 

1. Steps 2 and 3 are iterated until the improvement in the cost through the iteration loop is 
less than a predefined value (e.g., 1%). 
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2. Perform index selection with the clustering column determined in Step 2 of the last 
iteration. (During the first iteration it is assumed that there is no clustering column.) 

3. Perform clustering design with the index set determined in Step 1.   The clustering 
property is assigned to each column in turn, and the best clustering column is selected. 

Algorithm 5 is a pseudo enumeration since index selection is repeated for every possible 

clustering column position. Accordingly, Algorithm 5 has a higher time complexity compared to 

Algorithm 6, but has a better chance of finding an optimal solution. Algorithm 5 corresponds to 

Phase 1 of Algorithm 2, a physical database design algerithm presented in Chapter 4. Algorithm 6 

corresponds to Phase 1 of Algorithm 1. 

5.4 Index Selection for Multiple-File Databases 

Extension of the index selection algorithm for application to multiple-file databases is also 

straightforward. The extended algorithm (let us call it Algorithm 7) is identical to Algorithm 4 

except for the following considerations: 

1. In all steps the entire database is designed at the same time. It is done by treating all 
columns in the database uniformly as if they were in a single relation. 

2. In Steps 2 and 5, when evaluating transactions involving more than one relation, the 
optimizer [SEL 79], [STO 76] has to be invoked to find the optimal sequence of access 
operations. 

Algorithm 7, if the clustering property is incorporated, corresponds to Algorithm 3 presented in 

Chapter 4. 

5.5 Summary 

In this chapter the access structure selection problem has been analyzed from the view point of 

the index selection problem. Important components of physical database design algorithms-Phase 

1 of Algorithm 1, Phase 1 of Algorithm 2, and Algorithm 3 itself-have been shown to be extensions 

of index selection algorithm. The advantages of the DROP heuristic over the ADD heuristic have 

been discussed. 
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6. Transaction-Processing Costs in Relational 
Database Systems 

6.1 Summary 

This chapter is identical to Appendix E. We therefore present here only a brief summary of the 

chapter. Accurate estimation of transaction costs is important for both query optimization and 

physical database design. In this chapter a comprehensive set of formulas for estimating transaction- 

processing costs in relational database systems is developed. The assumptions and the model of 

storage structures considered are stated in detail in Appendix E.2. The experiments for the design 

algorithms introduced in Chapter 4 have been performed using the cost formulas developed in this 

chapter. However, let us note that the theory presented in Chapter 2 and Chapter 3 do not depend 

on the specific cost model. 

In this chapter, first a set of necessary terminology is defined to provide a mechanism for 

understanding interaction among relations in multiple-file environments. Next, a set of elementary 

cost formulas is developed for elementary access operations. In doing so, four types of ordering are 

defined to characterize the order of accessing tuples. Finally, transactions are classified into eight 

types, and the cost formulas for each type are derived as composites of elementary cost formulas. 

The cost formulas have been fully implemented in the Physical Database Design Optimizer 

introduced in Appendix D. The detailed discussions for developing cost formulas are referred to 

Appendix E. 
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7. Estimating Block Accesses in Database 
Organizations 

7.1 Summary 

This chapter is identical to Appendix C. Thus, we present here only a brief summary of the 

chapter. 

An approximation formula is developed for estimating the number of block accesses when 

randomly selected tuples are accessed in TID order. This formula improves Yao's exact formula in 

the sense that it significantly reduces the computation time by eliminating the iterative loop, while 

providing a practically negligible deviation (maximum error=3.7%) from the exact formula. It also 

significantly improves Cardenas' earlier formula, which has a maximum deviation of e~ =36.8%. 

The formula is presented below without derivation. The details of the development of this 

formula are referred to Appendix C. 

Block access formula: Let n records be grouped into m.blocks (l<m<n), each containing 

p = n/m records.  If k records are randomly selected from the n records, the expected number of 

blocks hit (blocks with at least one record selected) is given by 

bwl(m,p,k)/m = [l-(l-l/m)k] 

+ [l/m2p X k(k-l)/2 X (l-l/m)k_1] 

+ [1.5/m3p4 X k(k-l)(2k-l)/6 X (l-l/m)k_1] 

whenk<n-p, and 

bwl(m,p,k)/m = 1 when k > n - p 
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8. Separability in Network Model Database 
Systems 

8.1 Summary 

This chapter is identical to Appendix B. Thus, we present here only a brief summary of the 

chapter. We discuss an application of the theory of separability to network model database systems. 

In particular, we show that a large subset of practically important access structures provided by the 

network model database systems has the property of separability under the usage specification 

scheme proposed. The implication is that, if the available access structures are restricted to this 

subset, the optimal design of the access configuration of a multifile record type database can be 

reduced to the collective optimal designs of individual record types. The physical designs thus 

obtained is then extended, using heuristics, to include other access structures that have not been 

incorporated initially. The CODASYL 78 Database Specification [COD-a 78] [COD-b 78] is used as 

the environment for our discussion. The major assumptions and detailed discussion on this subject 

are referred to Appendix B. 
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9. Design Algorithms for More-than-Two- 
Variable Transactions 

So far only transactions that involve at most two variables have been considered. Transactions of 

more than two variables can be incorporated in the physical design methodology through 

decomposition into a sequence of two-variable transactions. In this chapter a preliminary -though 

not comprehensive-methodology is suggested for multivariable transactions. We investigate some 

potential problems that violate the conditions for separability and discuss approximations to solve 

those violations. However, a complete treatment of this problem including the validation of 

heuristics involved needs much more work to be done and is left as a further study. Infection 9.1 an 

extended algorithm for relational databases is discussed; in Section 9.2 one for network model 

databases is discussed. 

9.1 An Extended Algorithm for Relational Databases 

9.1.1 The Algorithm 

ALGORITHM 8 

1. Start with an initial access configuration in which every column has an index and the 
clustering property. 

2. Decompose   multivariable   transactions   into   optimal   sequences   of  two-variable 
transactions based on the current access configuration. 

3. Invoke the physical database desbn algorithm for two-variable transactions. 

4. Repeat Steps 2 and 3 until the variation in the total cost becomes smaller than a 
predefined value (say 1%). 

The algorithm starts with an initial configuration in which every column has an index and the 

clustering property. The initial configuration is intended to be as close to the optimal solution as 

possible. In particular, it is believed that this configuration is closer to the optimal than the one 

having a full index set but without any clustering property. Let us note that this initial configuration 
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is not a practically feasible one; but, once the first iteration is finished, the access configuration 

becomes feasible. 

9.1.2 Decomposition 

Decomposition is a procedure that finds an optimal sequence of two-variable transactions, or 

equivalently, an optimal join sequence. In principle an optimal join sequence can be obtained by 

enumerating all permutations of relations to be joined. Since the number of permutations could be 

extensive, a heuristic is used to restrict the search space [SEL 79]. When possible, the search is 

reduced by considering only those sequences in which a relation is related by a join predicate to any 

of previous relations in the sequence. More formally speaking, in joining relations R^ R2,...,Rn, only 

those sequences Ra, R^,...^ are examined which, for all j (j = 2,...,n), satisfy either of the following 

conditions: 

1. R;. has at least one join predicate with some relation Rik, where k < j. 

2. for all k > j, R^ has no join predicate with any of R^, Ri2, ...,Rj/: _ ™. 

The intention of this heuristic is to defer all joins requiring cartesian products as long as possible. 

More discussions on this heuristic can be found in [SEL 79]. 

A join sequence can be visualized as a sequence of two-variable transactions as follows. Suppose 

we have a join sequence Rj, R2,...,Rn> Then, the corresponding sequence of two-variable 

transactions is (Rx JOIN R2), (T2 JOIN R3), (T3 JOIN ^....(T^ JOIN Rn), where T. is the result 

of Rx JOIN R2 JOIN ... JOIN Rj_r Thus, except for the first join, each two-variable transaction is a 

join between a temporary relation that contains the result of the joins performed so far and the next 

relation in the join sequence. 

A temporary relation can be either materialized or nonmaterialized. When materialized, a 

temporary relation is written in a file on the secondary storage. When not materialized, a temporary 

relation is a relation only in concept and does not physically exists. For instance, if Rp R2, R, are 

joined by using the inner/outer-loop join method recursively (i.e., for one tuple of R, corresponding 
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R2 tuples, and in turn, corresponding R3 tuples are retrieved; this procedure is repeated for every 

tuple of R^, the temporary relation Rx JOIN R2 is not materialized, but still we can conceptually 

visualize the temporary relation T2 as the result that would be obtained by joining R± and R2 only. 

Materialized or not, a temporary relation has its cardinality which we call the result cardinality. 

The result cardinality up to relation R. can be estimated as follows: 

Result cardinality = 

U\_1 (n.X selectivity of the restriction predicate for Rj)X 

nf      h oin(l/column cardinality of the join column of the 1-side relation), 

where n. is the cardinality of relation Rj. This assumes that each distinct join column value in the 

N-side relation of the 1-to-N relationship has a matching value in the join column of the 1-side 

relation according to the rules in the structural model [WIE 79]. 

For decomposed two-variable transactions involving temporary relations, only the following join 

methods can be used. Let Rx be the temporary relation. 

Rl R2 
1. Sort-merge method (partial) Sort-merge method (partial) 

2. Sort-merge method (partial) Join index method (partial) 

3. Inner/Outer-Loop Join Method(partial)   Inner/Outer-Loop Join Method(partial) 

(from RA) (to R2) 

The join index method (partial) for Rj is excluded from consideration since a temporary relation 

does not have any index unless one is explicitly created. Since creating an index at run time is an 

expensive procedure, we exclude this possibility. For the same reason, the Inner/Outer-Loop join 

method is prohibited from R2 to Rr 

The partial-join costs of these join methods for decomposed two-variable transactions are slightly 

different from the ordinary ones. For the first two combinations the temporary relation must be 

materialized. Therefore, the partial-join cost of Rx must include the cost of writing the temporary 

relation to the disk initially. On the other hand, when the third combination is used, the temporary 
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relation need not be materialized,-and further, it need not be read in since necessary tuples are 

already held in the main memory. Thus, the partial join cost of R, becomes 0. 

For convenience, we make further modification to the definition of partial-join costs for 

decomposed two-variable transactions. Since we are not concerned about designing access 

structures for Rr and further the partial-join algorithm for Rx is totally dependent on the partial- 

join algorithm for R2, we can safely combine the partial-join cost of Rx with that of Rr This way, we 

do not have to consider the cost of the temporary relation separately. Thus, the modified partial-join 

cost for R2 can be calculated as follows: 

Modified Cost of the Sort-Merge Method (partial) for R, 

= Cost of the Sort-Merge Method (partial) for R2 

+ Cost of materializing R. 

+ Cost of the Sort-Merge Method (partial) for Rx 

Modified Cost of the Join Index Method (partial) for R2 

= Cost of the Join Index Method (partial) for R2 

+ Cost of materializing R, 

+ Cost of the Sort-Merge Method (partial) for Rx 

Modified Cost of the Inner/Outer-Loop Join Method (partial) for R2 

= Cost of Inner/Outer-Loop Join Method (partial) for R2 

9.1.3 Discussion 

In this subsection we shall investigate a potential problem in decomposition that violates a 

condition for separability in decomposing a multivariable join in relational database systems. First 

we identify the problem and propose a simple solution. It turns out that the simplest solution is to 

ignore the problem. We shall provide some justification (though not complete) for this approach. 

So far, we modelled a decomposed two-variable join as a join between a temporary 

relation-materialized or not-representing the result of the joins already performed and the next 
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relation in the join sequence. If the inner/outcr-loop join method is used, however, there are some 

cases in which the cost calculated based on this model is different from the actual cost as we see in 

Example 9.1. 

Example 9.1: Let Rr R2, R3, and R4 be four relations having N-to-1 relationship as described in 

Figure 9-1. 

Rj R2 R3 
R4 

I I I I 
r—i        i*—i        i*—i        i 
i       i        i       i        i       i        i 

Figure 9-1:  Four Relations. The symbol * stands for an N-to-1 relationship. 

We consider the join sequence <Rp R2, R3> R4>. Suppose that the join column of Rx is clustered. 

If the inner/outer-loop join method is used for Rp the tuples of Rx having the same join column 

value (let us call them a group) that satisfy the restriction predicate for Rx will be accessed 

consecutively. Accordingly, the same tuple in R2 having the same join column value will be 

repeatedly accessed; thus, the block containing this tuple will very likely reside in the main memory 

without incurring additional I/O accesses. Furthermore, the tuple in R3 matching the R2 tuple and 

accordingly the R4 tuple matching the R3 tuple will also be repeatedly accessed causing the blocks 

containing these tuples to remain in the buffer. Thus, effectively, the cost of the inner/outer-loop 

join method for R3 is reduced by a factor equivalent to the average number of tuples of Rx in the 

same group that satisfy the restriction predicate for Rr The same situation happens when the join 

index method or the sort-merge method is used for Rr It also happens to R3 and R4 when 

temporary relation T2 (R1 JOIN R2) is materialized and the sort-merge method is used for T2. D 

The situation in Example 9.1 violates a condition for separability. When a multivariable join is 

decomposed, the access configuration of, or the join methods to be used for, the previous relations in 
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the sequence are not known. Therefore, there is no way to find out whether the cost of the 

inner/outer-loop join for a decomposed two-variable join would be reduced to allow for repeated 

accesses. 

As a simple solution to this problem, we keep the temporary-relation view for the nonmaterialized 

intermediate result. By doing that, we sometimes overestimates the cost of the inner/outer-loop join 

method; but, the property of separability is preserved. However, we believe the error that might be 

introduced by this approximation is not significant according to the following justification. To 

illustrate, let us again consider two relations R1 and R2 having an N-to-1 relationship. Let Fx and F2 

be the selectivities of the restriction predicates for R, and R,. 

1. If F1Xn1 < n2 there are less tuples selected than the number of groups in Rx assuming 
that there are not many dangling tuples in R2; thus, most groups will have at most one 
selected tuple, and the repeated access problem will rarely occur. 

2. If FjXnj^ > n2, in many cases performing the inner/outer-loop join from R2 to R, is 
more beneficial because it reduces the number of traversals of SET occurrences. If this is 
the case, the repeated access problem will not occur since join is performed from 1-side 
to N-side relation of die 1-to-N relationship. 

3. Sometimes, the inner/outer-loop join method cannot be performed from R2 to Rx (for 
instance, if R1 is a temporary relation). For these cases justification 2 is not valid; 
instead, we make the following arguments: if FjXnx > n2, the cost of the join index 
method or the sort-merge method is comparable to or even less than the inner/outer- 
loop join cost for the following two reasons; thus, overestimating the cost of the 
inner/outer-loop join method by ignoring the repeated access problem will not affect the 
total transaction cost since we have less costly alternatives that will be chosen by the 
optimizer. 

a. Since FjXn^n^ the number of tuples selected in Rx is greater than or equal to 
the number of join column values, which is equal to the number of groups. Thus, 
most of the groups will be selected. Accordingly, most of the tuples as well as join 
index entries of R2 will be accessed-possibly repeatedly. Hence, the cost of the 
join index method may be comparable or even less than that of the inner/outer- 
loop join method since, in the join index method, data tuples or index entries are 
accessed only once. 

b. Similarly, since a majority of R2 tuples (or at least their index entries if tuples do 
not satisfy the restriction predicate) are accessed, at least one block access will be 
needed for every tuple in R2. In this case the cost of the sort-merge method may 
be less than that of the inner/outer-loop join method. 
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These arguments show that the solution of simply ignoring the repeated access problem will not 

cause much deviation from the optimal in the transaction-procession cost. 

9.2 An Extended Algorithm for Network Model Databases 

9.2.1 Usage transformation functions 

In this section we describe an algorithm to extend the physical design of network model databases 

to more-than-two-variable transactions. Specifically, we present a method for obtaining the usage 

transformation functions F    and F    defined in Chapter 8.  These two functions together with 
OM MO 

function f    represent the entire usage information to be used for the physical database design. The 

usage transformation functions were defined to transform the number of traversals of SET types, f 

or f   , to the number of traversals of SET occurrences. For the purpose of this section, however, we 
MO 

define the usage transformation functions to transform the number of database entries ^(T.R) of 

transaction T to the number of traversals of SET occurrences. The two definitions of usage 

transformation functions are not inconsistent because f\   and f „ can be derived from f    and the 
OM MO liN 1 

access path tree which will be defined shortly. We also eliminated the parameter PRED assuming 

that in a transaction only one database entry occurs. 

To derive these functions, we introduce the concept of access path tree developed by Gerritsen 

[GER 77]. An access path tree represents the record types, connected by access paths, as well as the 

order of visiting them. It is derived consistent with the conceptual schema and is organized in such a 

way that the preorder traversal matches the order of visiting the nodes. Figure 9-2 shows an example 

of such a tree. The nodes marked Rr R2, etc. represents the record types. Access paths Sp S2 etc. 

correspond to the SET types. Associated with each record type R are its cardinality, n , and a 

predicate, PRED , that will be applied to its records. The point of entering the database is marked 

with DBENTER. In the access path tree we denote the SET type to which the subtree rooted on R. 

(or R) is attached as S. (or sct(R)). The symbol '*' represents the member record type of a SET type. 
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Rl             R2 R4           R8 
S2             S4 S8 

DBENTER O *0 *0* -- O 
PREDt        |PRED2 |PRED4      PREDfl 

S3 I S5  I 
* *    S 

R3 O       R5 O *0 R7 
PRED3 *PRED5  PRED7 

s6| 

OPRED, 

Figure 9-2:  An Access Path Tree. 

To achieve usage transformation we use the concept of active records of a SET type in the access 

path tree. The set of active records of a SET type corresponds to the result of processing the 

transaction had the record types in the subtree connected by the SET not existed in the access path 

tree. Accordingly, the number of active records determines the number of traversals of the SET 

occurrences to the next record type in the preorder traversal. Thus, the number of traversals of the 

SET occurrences is derived as follows: 

FOM (T,R,S) = fENT (T.R^X ACTIVE(set(owner(R,S))) (9.1) 

FM0 (T,R,S) = fENT (T.R^X ACTIVE(set(R)) (9.2) 

where ACTIVE(S) represents the number of active records of SET type S, and owner(R,S) the 

owner record type of R with respect to SET type S. 

9.2.2 Number of active records 

We now proceed to develop an algorithm to obtain the number of active records. We begin with 

a simple case and extend it to more complex cases. First, we assume that the access path tree is a 

linear list without any branch; then the number of active records of SET type S    , can be obtained 
n+l 

as follows: 

ACTIVE(Sn+1) = ACTIVE(Sn)XJR      s XgR XSEL(PRED ) 
n —1' n        n—1' n 
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ACTIVE(S2)     = njXSELCPRED^ 

Example 9.2 further illustrates this case. 

Example 9.2: Consider an access path tree in Figure 9-3. 

R, 

DBENTER  O- 
PRED, 

-*0*- 
PRED, 

R, 

-O 
PRED, 

Figure 9-3:  A Simple Access Path Tree without Any Branch. 

Associated with the tree are the following data. 

Cardinality 

^ = 50 

n2=200 

n2=40 

Grouping Factor Join Selectivity Selectivity of Predicate 

% S =1 

%2,s2=
4 

v2
=l 

JR

2S2_1 

SEL(PRED1)=0.1 

SEL(PRED2)=0.5 

% S =10 

% S =1 

R2'S3~ 
JR     =0.5 

SEL(PRED3)=0.5 

Then, the number of active records in R^ R2, and R3 are 

ACTIVE(S2) = 50X0.1 = 5 

ACTIVE^) = 5X1X4X0.5 = 10  D 

To extend the method of obtaining the number of active records to a more general access path 

tree (the tree is no longer is a linear list), we define procedure LABEL that traverses the tree in 

preorder, calculates the number of active records, and records the number in the global array of 

variables ACTIVE[S]. Here, function Root returns the root node of branch K. A call to 

LABEL(R1,RQ) calculates the number of active records and sets the global variables ACTIVE[S] for 

all SET types. Here, two arrays of global variables, ACTIVE and TACTIVE, are used. 

TACTIVE[R] represents the number of active records when the tree traversal has been completed 
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up to record type R; but, it changes every time the traversal of a branch of record type R is 

completed. ACTIVE[S] keeps the value of TACTIVE[R] just before SET type S leading to a branch 

of R is traversed. The parameter R-PREV represents the record type connected to R via SET set(R). 

Let us note that R-PREV is not the record type last visited. 

To set up the initial conditions we create a hypothetical record type RQ and SET type S, such that 

TACTIVE[R0]=1, JR s =1, JR s =l,gR s =1, gR s =nr Equivalently, record type RQ has one 

record that is linked to all the records of Rx via SET type S,. 

procedure LABEL(R, R-PREV) 

begin 

TACTIVE[R]=TACTIVE[R-PREV]XSEUPREDR)XgRS(R)XJR.pREVS(R) 

for every branch B. 

begin 

ACTI VEfsetCRootCB;))]=T ACTI VE[R] 

LABEL(Root(Bi),R) 

TACTI VE(R]=TACTI VE[Root(B.)] 

end 

end 

9.2.3 Predicate branch 

Procedure LABEL assumes that each record type in the access path tree contributes some data 

fields in the output. Sometimes, a branch in the tree is traversed only to check the existence of 

related records satisfying the specified predicates. We call this a predicate branch: it serves in its 

entirety as one predicate. 

In this section we extend the procedure LABEL to incorporate predicate branches. The selectivity 

of a predicate branch is given by Ratio(Root(Branch)). To present the function Ratio, we first define 

function f that calculates the fraction of records of Fathcr(R) to be selected when R has a restriction 
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predicate having selectivity 'factor'. Function Father returns the father node of R in the access path 

tree. 

function f(factor, R) 

begin 

if R has an 1-to-N relationship with its father then 

f=factorXJFAraER(RXS(R) 

if R has an N-to-1 relationship with its father then 
f = WVW 8W factor) / (n/g^)) X JFATHER(R)iS(R) 

end 

In function f, if R has a 1-to-N relationship with its father, 'factor' and the linkage factor of 

father(R) is multiplied to obtain the fraction of records of Father(R) to be selected. On the other 

hand, if R has an N-to-1 relationship with its father, the number of set occurrences in R selected by 

'factor' is obtained by using the 'b' function first, and the result is divided by the total number of 

SET occurrences in R to find the fraction of SET occurrences selected by the predicate; this fraction 

is multiplied by the linkage factor of father(R). 

With this definition of function f, function Ratio is defined as follows: 

function Ratio(R) 

if R is a leaf-node then 

else 

Ratio = SEL(PREDR) 

Ratio = SEL(PREDD) 

X IT tfRatioCRootCB,)), Root^)) 
for each branch B. of R 

Function Ratio calculates the fraction of records of R to be selected according to all the predicates 

specified for the nodes in its subtree, as well as the predicate for R itself. If R is a leaf node, it has 

only its own predicate; thus, the value of the function is the selectivity of this predicate. If R is a 

nonleaf node, the effective selectivity of all its branches must be multiplied to SEL(PREDR). 

69 



CHAPTER 9.      DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS 

Using functions fand Ratio, procedure LABEL is extended to handle the general case having 

predicate branches as follows: 

procedure LABEL{R, R-PREV, flag) 

begin 

TACTIVEfR] = TACTIVE[R-PREV]XSEIXPREDR)Xg^R)XJRpREVS(R) 

flag = true 

for every branch B. 

begin 

ACnVElsetOtootfBj))] = TACTIVE[R] 

LABELtRootfB^R.flag) 

if flag then (B. is a predicate branch) 

TACTIVE[R] = TACTIVEtRlXf^RatioCRoottBj))) 

else 

TACTIVE[R] = TACTIVEtRootCBj)] 

end 

if any data item of R propagates to the result then flag = false 

end 

In this procedure a reference parameter 'flag' indicates whether any data items propagate to the 

result from the branch B.. If none does, then the branch is a predicate branch, and the current 

number of active records are reset to TACTIVEJRlXftRatiotRoot^))). TACTIVEfR] was the 

current number of active records just before the traversal of branch B{ started. f^RatioCRootCBj))) is 

the effective selectivity for R of all the predicates in branch Br This procedure LABEL can handle 

the most general structure of the access path tree including predicate branches. 

9.2.4 Discussion 

In this subsection we shall investigate a potential problem that violates a condition for separability 

in extending the design algorithm to more-than-two-variable transactions for network model 

database systems. Just as in relational systems, it seems that the simplest solution is to ignore the 

problem. We shall provide some justification for this approximation solution. 
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The number of active records determines the number of traversals of SET occurrences. If 

traversals of the SET occurrences are totally random, we can consider them as independent 

traversals. However, in some cases the same SET occurrence is traversed more than once 

consecutively, and the repeated traversal cannot be considered independent Specifically, we have 

this situation when the root node (R^ of the access path tree is a member of a SET type (S), and the 

records of RL are accessed according to the order of values of linking data item of this SET type. 

This situation happens in the following cases. 

1. The records of R, are clustered via set S. These records are accessed by an area scan. 

2. The records of R, are accessed through a record order key defined on the linking data 
item. 

3. The records of Rx are associatively accessed through a key defined (that in turn can be 
implemented with an index for example) on the linking data item. 

In this situation the records of R: in the same SET occurrence (let us call them a group) that 

satisfy the restriction predicate for R, are accessed consecutively. Accordingly, the corresponding 

owner record of type R, is repeatedly accessed, and the block containing this record will very likely 

reside in the main memory without incurring additional I/O accesses. Furthermore, the record of 

the next record type, R3, matching R2 record will also be repeatedly accessed, and the corresponding 

block will remain in buffer. Similarly, the records of record types in the rest of the access path tree 

that are directly or indirectly related to the records of Rx will be repeatedly accessed reducing the 

number of I/O accesses. Let us note that we encountered a similar situation in relational systems 

when the inner/outer-loop join method was used. 

This situation poses a problem when we design the access configurations of individual record 

types separately. In particular, when we design the access configuration of a record type (say R3) 

other than R,, there is no way of knowing which access structures Rx would have or which access 

structures of R, will be exploited in processing a transaction. As a result, we cannot determine 

whether the number of I/O accesses will be reduced due to repeated accesses to the same records. 

-71- 



CHAPTER 9.      DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS 

Although there is no clear solution for this problem, we have reasonable justifications for 

designing individual record types separately by simply ignoring the problem. Specifically, we 

believe that the error incurred by this approximation is not significant because it does not appear 

that the three exceptional cases stated above happen frequently for the following reasons: 

1. An area scan is not and must not be used frequently. Thus, Case 1 in page 71 will not 
occur frequently. 

2. Accessing the records of Rx through a record order key requires scanning every record in 
Rj regardless of the predicate specified for it. In this case, it frequently would be less 
costly to access owner records first and then access records of member records (R,) 
through the SET because the predicate on R2 can reduce the number of accesses to R,. 
This reduces the possibility that Case 2 can happen. 

3. The restriction predicate on linking data item frequently is specified for the owner 
record type; the reverse seems to be rare. For instance, suppose we have two record 
types EMPLOYEES and CHILDREN. The CHILDREN is the member record type, 
and the data item EMPLOYEE-NAME is the linking data item. Consider a query 
"Show AGE, JOB, DEPARTMENT of employee 'John Smith' and all his/her children." 
In this case it would be somewhat awkward to specify the predicate 
CHILDREN.EMPLOYEE-NAME = 'John Smith' rather than 
EMPLOYEES.EMPLOYEE-NAME = "John Smith'. This reduces the possibility that 
Case 3 can happen. 

4. Exceptional cases more rarely occur especially when the system is implemented 
according to the 1971 DBTG Proposal [COD 71]. In this proposal the record order key 
and the indexes do not exists. Thus, Cases 2 and 3 never arise, and exceptions can only 
occur when an area scan is used, Rx is the clustered via SET which is to be traversed 
subsequently, and further Rx is the member type of the SET. It is not likely that this 
situation occurs frequently. 
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10. Summary of the Research 

10.1 Summary 

A new approach to multifile physical database design was presented. Most previous approaches 

towards multifile physical database design concentrated on developing a cost evaluator and its 

application in the design aid systems. To accomplish the optimal physical design, however, this 

approach had to rely on the designer's intuition or, in the worst case, on an exhaustive search which 

is practically in feasible even for moderate-sized databases. 

In our approach a theory was developed to partition the entire database design into collective 

subproblems. Straightforward heuristics were subsequently employed to incorporate features that 

could not be included in the theory. This approach is somewhat formal, deliberately avoiding 

excessive reliance on heuristics. Our purpose is to render the whole design phase manageable and to 

facilitate understanding of the underlying mechanisms. 

In Chapter 2 we introduced the theory of separability. The theory identified the condition for 

separability under which the problem of optimal assignment of access structures to the entire 

database can be reduced to the subproblems of optimizing individual logical objects independently 

of one another. 

Application of the theory to the relational database systems was discussed in Chapter 3. 

Specifically, it was shown that the set of join methods that consists of the join index method, the 

sort-merge method, and the combination of the two satisfies the conditions for separability under 

certain constraints. Thus, if the DBMS provides only these join methods, the physical database 

design can be partitioned into the designs of individual relations. 

Application of the theory to the network model database systems was discussed in Chapter 8. As 

in relational systems, it was shown that a large subset of practically important access structures that 

are available in the network model database systems satisfies the conditions for separability. 
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In Chapter 4 three algorithms for the physical design of relational databases were proposed. 

Based on the concept of separability, Algorithm 1 and Algorithm 2 design the access configuration 

relation by relation. These algorithms were also extended using heuristics to incorporate the 

inner/outer-loop join method (a nonseparable join method). On the other hand, Algorithm 3 

designs the configuration of the entire database all together. These algorithms were fully 

implemented in the Physical Database Design Optimizer (PhyDDO) and tested with simple 

situations. The result showed that all three algorithms found optimal solutions in most cases. 

Specifically, among the 21 input situations tested, Algorithm 1 found optimal solutions in 19 cases, 

Algorithm 2 in 21 cases which are all cases, and Algorithm 3 in 20 cases. Even in the cases in which 

nonoptimal solutions were found, the deviations were far from significant (maximum error = 6.6%). 

Index selection algorithms for relational databases were presented in Chapter 5. An algorithm 

based on the DROP heuristic was introduced for single-file databases and compared with the ADD 

heuristic. In an exhaustive test performed, the DROP heuristic found optimal solutions in all cases. 

In comparison, the ADD heuristic found nonoptimal solutions in several occasions. This algorithm 

based on the Drop heuristic was extended to incorporate the clustering property and also extended 

for application to multifile databases. 

A comprehensive set of cost formulas for queries, update, insertion, and deletion transactions was 

developed in Chapter 6; they were used in the implementation of PhyDDO. 

In Chapter 7 we introduced a closed noniterative formula for estimating the number of block 

accesses. This formula, an approximation of Yao's exact formula, has a practically negligible error 

and significantly reduces the computation time by eliminating the iterative loop found in Yao's 

formula. It also achieves a much higher accuracy than an approximation proposed by Cardenas. 

Extensions of separability approach to more-than-two variable transactions were briefly discussed 

in Chapter 9.   This was done by decomposing the transactions into a sequence of two-variable 
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transactions. Some properties of decomposition, however, do not satisfy the conditions for 

separability. In the proposed methodology this violation was simply ignored. Some justification, 

though not complete, was given for this approximation. 

The property of separability is a good property to exploit in the physical database design. To take 

advantage of this property, as exemplified in Chapters 3 and 8, one has to extract the maximum set 

of features that satisfies the conditions for separability; then, extend it using heuristics to incorporate 

the features not included in the separable set To incorporate as many features as possible in the first 

phase, it is possible to make approximations to the cost formulas and make them separable. The cost 

formulas for network model databases developed by Gerritsen (see Appendix B) is a good example; 

these cost formulas were made separable by disregarding the possible violation of a condition for 

separability explained in Section 9.2. Another way to take advantage of the separability property is 

to design the optimizer and the join algorithms in such a way that they satisfy the conditions for 

separability. Some examples of the requirements are the availability of the TID intersection 

algorithm in manipulating multiple indexes to solve the restriction predicates and the ability of the 

join algorithms to take maximum advantage of the coupling effect so that either partial coupling 

factors or coupling factors are effective in both directions when the join index method is used. 

10.2 Topics for Further Study 

In many cases a large number of columns in a relation do not appear in any predicate of any 

transaction. An index on a column that does not appear in any predicate cannot contribute to the 

reduction of the access cost, but only adds its own maintenance cost. Thus, if we eliminate the 

indexes from consideration in a preliminary index selection step before the physical database design 

algorithms are invoked, we could reduce the design time significantly. 

The design methodology must be extended to include more-than-two-variable transactions. A 

preliminary methodology was proposed in Chapter 9. Nevertheless, more elaborate schemes as well 

as better justification of the approximations arc subject to further research. 
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If a relational DBMS supports additional access structures-such as the linked list structures- the 

design algorithm must be modified accordingly. We believe that this can be achieved by including a 

separate design step in the iteration loop of the design algorithm. 

For network model databases, development and validation of design algorithms including 

nonseparable access structures are left to a further study. 

The hierarchical database model employed in many existing database systems [WIE 83] were not 

considered in this dissertation because it violates one important assumption necessary for the 

propery of separability. Hierarchical database store the records of many record types closely 

together in a hierarchical format. Thus, records of one record type disturbs the placement of the 

records of other record types violating the Condition 1.3 for separability. However, relevant 

heuristic employed with simplifying assumptions to incorporate the theory may provide sufficient 

accuracy for practical purposes. More research on this possibility is left to further study. 

-76 



APPENDIX A. SEPARABILITY - AN APPROACH TO PHYSICAL DATABASE DESIGN 

Appendix A. Separability - An Approach to 
Physical Database Design 

This appendix is omitted since it is available from the Proceedings of the Seventh 

International Conference on Very Large Databases held in Cannes, France, in 

September 1981. 

-77- 



APPENDIX B.  PHYSICAL DESIGN OF NETWORK MODEL DATABASES USING THE PROPERY 

OF SEPARABILITY 

Appendix B. Physical Design of Network 
Model Databases Using the 
Propery of Separability 

This appendix is omitted since it is available from the Proceedings of the Eighth 

International Conference on Very Large Databases held in Mexico City, Mexico in 

September 1982. 
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Appendix C. Estimating Block Accesses in 
Database Organizations 

This appendix is omitted since it will be published in the Communications of the 

ACM shortly. 
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Appendix D. Physical Design Algorithms for 
Multifile Relational Databases 

This paper has been submitted for publication. For convenience all the references 

have been moved to the end of the thesis. 
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Physical Design Algorithms for Multifile Relational Databases 

by 

Kyu-Young Whang 
Computer Systems Laboratory 

Stanford University 
Stanford, California 94305 

Abstract 

Three algorithms for the optimal physical design of multifile relational databases are 
presented. Each algorithm employs different techniques of partitioning the search space 
to reduce the time complexity. The three design algorithms are compared with one 
another to validate the heuristics exploited. In an extensive test performed to determine 
the optimality of the design algorithms, all three found the optimal solutions in most of 
the cases. The time complexities of the design algorithms show a substantial 
improvement when compared with the approach of exhaustively searching through all 
possible alternatives. 

Categories and Subject Descriptors: 

H.2.2 [Database Management]: Physical Design—access methods; H.3.2 [Information Storage and 

Retrieval]: Information Storage -file organization; H.3.3 [Information Storage and Retrieval]: 

Information Search and Retrieval - clustering, retrieval models . 

General Terms: 

Algorithms, Design 
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physical database design, performance, query optimization, join methods, block accesses, index 

selection, selectivity 
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D.1 Introduction 

A good design of the physical database has a vital influence on the database performance. As 

such, the problem of physical database design has been given much attention in recent years [HSI 

70] [CAR 75] [SCH 75] [SEV 75] [HAM 76] [YAO-a 77] [BAT 80] [GER 77] [GAM 77]. The problem 

concerns finding an optimal configuration of physical files and auxiliary structures -given the 

logical access paths that represent the interconnections among objects in the data model; the usage 

patterns of those paths; the organizational characteristics of data stored in the files as well as the 

various features provided by a particular database management system(DBMS). In this paper we 

use the term access structures as the features that a particular DBMS provides for the physical 

database design (e.g., indexes and the property of clustering). We use the term access configuration 

of a relation or of the database to mean the aggregate of access structures specified to support a 

relation or the entire database. Thus, the access configuration is an abstraction of the physical 

database. 

In the past much of the research related to the physical database design concentrated on rather 

simple cases dealing with a single file. In a database organization that consists of multiple files, 

however, the data in different files have complex interrelationships and access patterns; a simple 

extension of single file analyses (under the assumption of independency among files) does not 

suffice for understanding the interactions among multiple files. Although some efforts (mainly for 

developing cost formulas) have been devoted to multifile cases [GER 77] [BAT 80], it is difficult to 

use them for the optimal design of physical databases without exhaustively searching all the possible 

access configurations of the database. As pointed out in [GER 77], a relevant partitioning of the 

entire database is necessary to make the optimal design of the physical database a practical matter. 

A theory of separability was introduced in[WHA-a 81] as a formal basis for understanding the 

interrelationships among files. In particular, the theory proves that, given a set of join methods that 

satisfies a certain property called separability, the problem of designing the optimal physical 
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database can be reduced to the subproblem of optimizing individual relations (each relation is 

mapped to a file) independently of one another. Once the problem has been partitioned, the 

techniques developed for single-file designs can be applied to solve the subproblems. 

In this paper we introduce three algorithms for the optimal physical design of multifile relational 

databases. Our objective towards optimality in these algorithms is the minimum number of disk 

accesses for processing queries and update transactions. Algorithm 1 and Algorithm 2 are based on 

the theory of separability so that the design is performed relation by relation. These algorithms are 

also extended, by using heuristics, to include the join methods that are not in the separable set (we 

will call them nonseparable join methods). Algorithm 3 does not utilize the property of separability 

and designs the entire database all together. Instead, it employes a different partitioning scheme to 

reduce the time complexity. 

The design algorithms are tested for their optimality by comparing the results they produce with 

the optimal solution obtained by searching exhaustively among all the possible access configurations. 

When a large database is involved, however, it may be practically impossible to obtain the optimal 

solution by an exhaustive search; in this case, the results of the three algorithms are compared to 

obtain a solution that is most probably the optimal. 

Section D.2 introduces several key assumptions, while Section D.3 describes general classes of 

transactions we consider and the transaction processing methods of interest. In Section D.4 we 

briefly review the theory of separability. The three design algorithms are introduced in Section D.5. 

These algorithms have been fully implemented using a comprehensive set of cost formulas. The test 

results, including the accuracy of these algorithms (compared with the optimal solutions) and their 

performance (compared with the exhaustive-search method), are also discussed in Section D.5. 

More details on the development of the algorithms and the complete set of tests performed can be 

found in Appendices J.l and K. 
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D.2 Assumptions 

Several key assumptions are used throughout the paper. In principle, some assumptions are not 

necessary for Algorithm 3 since this algorithm does not rely on the theory of separability. But, for 

the purpose of comparison, we shall apply all the assumption stated in this section to the three 

algorithms. 

We assume that the DBMS we are considering provides indexes and the clustering property of a 

single relation as access structures. Clustering of two or more relations, as is available in many 

hierarchical organizations, is not considered. We also assume that all TID (tuple identifier) 

manipulations can be performed in the main memory without any need to perform I/O accesses. 

The database is assumed to reside on disklike devices. Physical storage space for the database is 

divided into units of fixed size called blocks [WIE 83]. The block is not only the unit of disk 

allocation, but is also the unit of transfer between main memory and disk. We assume that a block 

that contains tuples of a relation contains only the tuples of that relation. Furthermore, we assume 

that the blocks containing tuples of a relation, which comprise a file, can be accessed serially. 

However, the blocks do not have to be contiguous on disk. 

In principle, we assume that a relation is mapped into a single file, an attribute to a column, and a 

tuple to a record. Accordingly, we shall use the terms file and relation interchangeably. Nor shall we 

make any distinction between an attribute and a column or between a tuple and a record. 

Sometimes we need indexes defined for two or more attributes (multiattribute indexes). The 

sequence of attributes for which a multiattribute index is defined is mapped into a virtual column. 

During the design process a virtual column is considered to be independent from ordinary single- 

attribute columns. One exception, however, is that when a virtual column is endowed with the 

clustering property, its first component column should have the property too. The virtual columns 

arc defined only for semantically appropriate sequences of attributes [WIE 79]. More detailed 

treatment on the virtual column can be found in Appendix J.2. 
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We consider only one-to-many (including one-to-one) relationships between relations. It is 

argued in [WHA-b 81] that many-to-many relationships between relations are less important for the 

optimization. Note that here we are dealing with relationships between relations based on the 

equality of join-attribute values; a relationship among distinct entity sets at the conceptual level is 

often structured with an additional intermediate relation [ELM 80]. 

Finally, we consider only one-variable (one-relation) or two-variable (two-relation) transactions. 

For a transaction of more than two variables, a heuristic approach can be employed to decompose it 

into a sequence of two-variable transactions. (These correspond to one-overlapping queries in 

[WON 76].) 

D.3 Transaction Evaluation 

D.3.1 Queries 

The class of queries we consider is shown in Figure D-l. The conceptual meaning of this class of 

queries is as follows. Tuples in relation R: are restricted by restriction predicate Pr Similarly, 

tuples in relation R2 are restricted by predicate Pr The resulting tuples from each relation are 

joined according to the join predicate RrA = R2.B, and the result projected over the columns <list 

of attributesX We call the columns that are involved in the restriction predicates restriction columns, 

and those in the join predicate join columns. The actual implementation of this class of queries does 

not have to follow the order specified above as long as it produces the same result 

SELECT <listofattributes> 
FROM    Rr R2 

WHERE RrA = R2.B AND 
P: AND 
P2 

Figure D-l:  General Class of Queries Considered. 

Query evaluation algorithms, especially for two-variable queries, have been studied in [BLA 76] 
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and [YAO 79]. The algorithms for evaluating queries differ significantly in the way they use join 

methods. Before discussing the various join methods, let us define some terminology. Given a 

query, an index is called a join index if it is defined for the join column of a relation. Likewise, an 

index is called a restriction index if it is defined for a restriction column. We use the term subtuple 

for a tuple that has been projected over some columns. The restriction predicate in a query for each 

relation is decomposed into the form Q1 A Q2, where Qx is a predicate that can be processed by 

using indexes, while Q2 cannot. Q2 must be resolved by accessing individual records. We shall call 

Qx the index-processible predicate and Q2 the residual predicate. 

Some algorithms for processing joins that are of practical importance are summarized below (see 

also[BLA76][SEL79]): 

• Join Index Method: This method presupposes the existence of join indexes. For each 
relation, the TIDs of tuples that satisfy the index processible predicates are obtained by 
manipulating the TIDs from each index involved; the resultant TIDs are stored in 
temporary relations R^ and R2'. TID pairs with the same join column values are found 
by scanning the join column indexes according to the order of the join column values. 
As they are found, each TID pair (TID1, TID2) is checked to determine whether TID, is 
present in R^ and TID2 in R2'. If they are, the corresponding tuple in one relation, say 
Rj, is retrieved. When this tuple satisfies the residual predicate for R., the corresponding 
tuple in the other relation R2 is retrieved and the residual.predicate for R2 is checked. If 
qualified, the tuples are concatenated and the subtuple of interest is constructed. (We 
say that the direction of the join is from R. to R2.) 

• Sort-Merge Method: The relations Rx and R2 are scanned-cither by using restriction 
indexes, if there is an index-processible predicate in the query, or by scanning the 
relation directly-and temporary relations T1 and T2 are created. Restrictions, partial 
projections, and the initial step of sorting are performed while the relations are being 
initially scanned and stored in Tx and T2. Tj and T2 are sorted by the join column 
values. The resulting relations are scanned in parallel and the join is completed by 
merging matching tuples. 

• Combination of the Join Index Method and the Sort-Merge Method: One relation, say 
Rl, is sorted as in the sort-merge method and stored in Tr Relation R2 is processed as in 
the join index method, storing the TIDs of the tuples that satisfy the index processible 
predicates in R2'. T1 and the join column index of R2 are scanned according to the join 
column values. As matching join column values are found, each TID from the join 
index of R2 is checked against R2'. If it is in R2', the corresponding tuple in R2 is 
retrieved and the residual predicate for R2 is checked. If qualified, the tuples are 
concatenated and the subtuple is constructed. 
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• Inner/Outer-Loop Join Method: In the two join methods described above, the join is 
performed by scanning relations in the order of the join column values. In the 
inner/outer-loop join, one of the relations, say Rr is scanned without regard to order, 
either by using restriction indexes or by scanning the relation directly, and, for each 
tuple of Rx that satisfies predicate Pr the tuples of relation R2 that satisfy predicate P2 

and the join predicate are retrieved and concatenated with the tuple of Rr The 
subtuples of interest are then projected upon the result. (We say the direction of the join 

is from R1 to R2.) 

Let us note that, in the combination of the join index method and the sort-merge method, the 

operation performed on either relation is identical to that performed on one relation in the join 

index method or in the sort-merge method. We call the operations performed on each relation join 

index method (partial) or sort-merge melhod(pariial), respectively; whenever no confusion arises, we 

call these operations simply join index method or sort-merge method. According to the definitions, 

the join index method actually consists of two join index methods (partial) and, similarly, the 

sort-merge method consists of two sort-merge methods (partial). 

D.3.2 Update Transactions 

We assume that the updates are performed only on individual relations, although the qualification 

part (WHERE clause) may involve more than one relation. Thus, updates are not performed on the 

join of two or more relations.  (If they are, certain ambiguity arises on which relations to update 

[KEL 81].) The class of update transactions we shall be considering is shown in Figure D-2. 

UPDATE R: 

SET          RrC = <new value> 
FROM 
WHERE 

RpR2 

RrA = 
Pl 
P2 

R B AND 
AND 

Figure D-2:  General Class of Update Transactions Considered. 

The conceptual meaning of this class of transactions is as follows.   Tuples in relation R2 are 

restricted by restriction predicate P2. Let us call the set of resulting tuples Ty Then, the value for 
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column C of each tuple in Rx is changed to <new value> if the tuple satisfies the restriction predicate 

P1 and has a matching tuple in T2 according to the join predicate. In a more familiar syntax [CHA 

76], die class of update transactions can be represented as in Figure D-3. The equivalence of the two 

representations (only for queries) has been shown in [KIM 82]. 

UPDATE Rx 

SET R^.C = <new value> 
WHERE  PL        AND 

RrA    IN 
(SELECT R2.B 
FROM    R 
WHERE P2 ) 

Figure D-3:  An Equivalent Form of the General Class of Update Transactions. 

Deletion transactions are specified in an analogous way. It is assumed that insertion transactions 

refer only to single relations. From now on, unless any confusion arises, we shall refer to update, 

deletion or insertion transactions simply as update transactions. 

The update transaction in Figure D-2 can be processed just like queries except that an update 

operation is performed instead of concatenating and projecting out the subtuples after relevant 

tuples are identified. In particular, all the join methods described in Section D.3.1 can be used for 

update transactions as well. But, there are two constraints: 1) The sort-merge method cannot be 

used for the relation to be updated since it is meaningless to create a temporary sorted file for that 

relation. 2) When the inner/outer-loop "join method is used, the direction of the join must be from 

the relation to be updated (R:) to the other relation (R2) because, if the direction were reversed, die 

same tuple might be updated more than once. Let us note that, although two-relation update 

transactions are not joins, the join predicates (ones that relate two relations) they have can be 

processed with the join methods defined for processing joins. 
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D.4 Theory of Separability 

To review the design theory based on the concept of separability, we introduce a formal definition 

of separability, related terminology, and theorems that are relevant to relational databases. A 

detailed development of the theory and the proofs of the theorems can be found in [WHA-a 81]. 

Definition 1: The join selectivity of a relation R with respect to a join path JP is the ratio of the 

number of distinct join column values of the tuples participating in the unconditional join to the 

total number of the distinct join column values of R. A join path is a set (R1, RrA, R2, R2.B), where 

R, and R, are relations participating in the join and RrA and R2.B are join columns of Rx and R2, 

respectively. An unconditional join is a join in which the restrictions in either relation are not 

considered. D 

Definition 2: A connection is a join path predefined in the schema [WIE 79]. D 

Definition 3: The coupling effect from relation Rx to relation R2, with respect to each transaction, 

is the ratio of the number of distinct join column values of the tuples of Rr selected according to the 

restriction predicate for Rr to the total number of distinct join column values in Ry D 

If we assume that the join column values are randomly selected, the coupling effect from Rx to R2 

is the same as the ratio of the number of distinct join column values of R2 selected by the effect of 

the restriction predicate for Rx to the total number of distinct join column values in R2 participating 

in the unconditional join. 

Definition 4: A coupling factor Cf,2 from relation Rx to relation R2 with respect to a transaction is 

the ratio of the number of distinct join column values of R2, selected by both the coupling effect 

from R, (through the restriction predicate for Rx) and the join selectivity of R2, to the total number 

of distinct join column values in R2. D 

According to the definition, a coupling factor can be obtained by multiplying the coupling effect 
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from Rx to R2 by the join selectivity of R2. This coupling factor contains all the consequences of 

interactions of relations in the join operation since it includes both coupling and join filtering effects. 

Definition 5: A partial-join cost is the part of the join cost that represents the accessing of only one 

relation as well as the auxiliary structures defined for that relation. D 

Definition 6: A partial-join algorithm is a conceptual component of the algorithm of a join method 

whose processing cost is a partial-join cost. D 

Definition 7: A set of join methods is separable under certain constraints, if under these 

constraints 

• Any partial-join algorithm of a join in the set can be combined with any partial-join 
algorithm of any join method in the set to form a complete join method, and 

• A partial-join cost of any join method in the set can be determined regardless of the 
partial-join algorithm used and the access configuration defined for the relation on the 
other side of the join. D 

Theorem 1: The problem of designing the optimal access configuration of a database can be 

decomposed into the tasks of designing the optimal access configuration of individual relations 

independently of one another, if the set of join methods used by the DBMS is separable. U 

Theorem 2: The set of join methods consisting of the join index method, the sort-merge method, 

and the combination method is separable under the constraint that, whenever the join index method 

is used for both relations in processing a transaction, the transaction must not have a residual 

predicate for at least one relation. D 

A violation of the conditions for separability can occur if indexes are missing for some restriction 

columns on both relations participating in a join since, then, restriction predicates on both sides will 

contain residual predicates. It has been argued in [WHA-a 81], however, that the error in the cost 

estimation due to this violation is minimal. This argument has been supported by the results of the 

experiments to be presented in Section D.5. 
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Let us note that, in Theorem 2, all the join methods introduced in Section D.3 are included except 

for the inner/outer-loop join method. The inner/outer-loop join method is nonseparable and has to 

be included in the design algorithms by a heuristic extension. 

D.5 Design Algorithms 

In this section we introduce three algorithms for the optimal design of multifile physical 

databases. The most straightforward method to obtain the optimal access configuration is an 

exhaustive search. For even a small input situation, however, this method could be intolerably 

time-consuming since its time complexity increases exponentially as the size of the input situation 

grows. Thus, we need to partition the design steps judiciously and to develop interfaces that will 

minimize interactions among these steps. 

The three design algorithms (Algorithms 1, 2, and 3) differ in their use of two partitioning 

schemes: horizontal partitioning and vertical partitioning. In the former, based on the theory of 

separability, the entire design is partitioned into the designs of individual relations. This scheme is 

also extended, by using heuristics, to include the inner/outer-loop join method which cannot be 

incorporated by the theory of separability. In the latter, index selection and clustering design are 

performed in separate steps during the process of designing a relation or the entire database. 

Algorithm 1 employs both horizontal and vertical partitioning; Algorithm 2 only horizontal 

partitioning; Algorithm 3 only vertical partitioning. 

In Section D.5.1 the design algorithms are described in detail. Their time complexities are 

presented in Section D.5.2. Validation of the design algorithms is discussed in Section D.5.3. 
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D.5.1 Three Algorithms 

The three algorithms are illustrated in Figures D-4, D-5, and D-6, respectively.   The input 

information for and the output results from the design algorithms are as follows: 

Input: 

• Usage information: A set of various queries and update transactions with their 
frequencies. 

• Data Characteristics: The logical schema including connections; (for each relation in the 
database) cardinality, blocking factor, index blocking factors and selectivities of all 
columns, relationships with respect to connections, join selectivities with respect to 
connections. 

• Derived inputs: Coupling factors with respect to individual two-variable transactions. 
(These are derived from the data characteristics and the restriction predicates in the 
transactions.) 

Output: 

• The optimal access configuration of the database, which consists of the optimal position 
of the clustering column and the optimal index set for each relation. 

• The optimal join method for each two-variable transaction. 

D.5.1.1 Algorithm 1 

The design is performed in two phases: Phase 1 and Phase 2. These two phases are iterated until 

the refinement through the loop becomes negligible (1 %). In Phase 1, based on the theory of 

separability, the access configuration is designed relation by relation independently of one another 

using only the join methods in the separable set- the join index method, the sort-merge method, 

and the combination method. Phase 1 is further divided into two steps: the Index Selection Step 

and the Clustering Design Step. In the Index Selection Step an optimal index set is chosen given the 

clustering column position determined in the Clustering Design Step of the last iteration. (In the 

first iteration, there is no clustering column initially.) In the Clustering Design Step, an optimal 

clustering column position is chosen given the index set determined in the Index Selection Step. 

92 



APPF.NDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES 

Phase  1 

|    Index Selection    | 

|   Clustering Design   | 

Phase 2 

|  Resolve Inner/Outer-Loop Join   | 

Relation by Relation 

{Join Index Method 
Sort-Merge Method 
Combination Method} 

Entire Database 

{All Join Methods} 

Figure D-4:   Algorithm 1 for the Optimal Design of Physical Databases. 

Before introducing the details for these steps, we define the function EVALCOST-1 as follows: 

Function EVALCOST-1 

Input: 

• Access configuration of the relation being considered. 

• Set of transactions that arc to be processed in Phase 1 using the inncr/outcr-loop join 
method and the direction of the join for each transaction in the set. (These transactions 
are identified in Phase 2 of the previous iteration.) 

Output: 

• Total cost of the relation. 

93- 



APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES 

I 
-V- 

Phase  1 

Combined Index Selection| 
& Clustering Design    | I   I 

Relation by Relation 

{Join Index Method 
Sort-Merge Method 
Combination Method} 

Phase 2 

Resolve Inner/Outer-Loop Join 

Perturbation 

Entire Database 

{All Join Methods} 

Figure D-5:   Algorithm 2 for the Optimal Design of Physical Databases. 

-V- 
NS Index Selection 

- Entire Database 
| {All Join Methods} 

NS Clustering Design 

I 

- Entire Database 
| {All Join Methods} 

|     YES 
V 

Figure D-6:  Algorithm 3 for the Optimal Design of Physical Databases. 

(In the input specification of this function as well as the functions or algorithms introduced later, the 

global input information introduced at the beginning of this section is assumed implicit unless stated 

otherwise.) 
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The total cost of a relation is obtained by summing up the costs of single-relation transactions and 

the partial-join costs of two-relation transactions that refer to the relation. The cost of each 

transaction must be multiplied by its frequency. For each partial-join, the best partial-join algorithm 

is selected and its cost calculated. However, if the transaction is supposed to be processed by the 

inner/outer-loop join method, that method will be used unconditionally according to the join 

direction specified because the inner/outer-loop join method cannot be treated uniformly with 

separable join methods in Phase 1 due to its nonseparable nature.) 

Using the function EVALCOST-1 defined above, the algorithm for index selection is described as 

follows: 

Index Selection Step 

Input: 

• Clustering column position for each relation 

• Set of transactions that are to be processed using the inner/outer-loop join method and 
the direction of the join for each transaction in the set 

Output: 

• The optimal index set for each relation with respect to the input information. 

Algorithm: 

1. Pick one relation and start with an access configuration having a full index set 

2. Try to drop one index at a time and apply EVALCOST-1 to the resulting access 
configuration to find the index that yields the maximum cost benefit when dropped. 

3. Drop that index. 

4. Repeat Steps 2 and 3 until there is no further reduction in the cost. 

5. Try to drop two indexes at a time and apply EVALCOST-1 to the resulting access 
configuration to find the index pair that yields the maximum cost benefit when dropped. 
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6. Drop that pair. 

7. Repeat Steps 5 and 6 until there is no further reduction in the cost. 

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be 
predefined) indexes at a time. 

9. Repeat the entire procedure for every relation in the database. 

The variable k, the maximum number of indexes that are dropped together at a time, must be 

supplied to the algorithm by the user. We believe, however, that k=2 suffices in most practical 

cases. In fact, in all the tests performed to validate the design algorithms, the maximum value of k 

actually exploited was 1 (i.e., no improvement was observed with larger values of k). 

The index selection algorithm presented here bears some resemblance to the one introduced by 

Hammer and Chan [HAM 76], but it uses the Drop Heuristic [FEL 66] instead of the ADD Heuristic 

[KUE 63]. The Drop Heuristic attempts to obtain an optimal solution by incrementally dropping 

indexes starting with a full index set. On the other hand, the ADD Heuristic adds indexes 

incrementally starting from an initial configuration without any index to reach an optimal solution. 

Since we are pursuing a heuristic approach for index selection, the actual result is suboptimal. 

However, in most of the cases we tested, the algorithm found optimal solutions. More details on the 

index selection algorithm, its validation, and the advantage of the Drop Heuristic over the ADD 

Heuristic will be presented in Appendix F. 

The Clustering Design Step comes next in Phase 1. 

Clustering Design Step 

Input: 

• Index set for each relation determined in the Index Selection Step. 

• Set of transactions that are to be processed using the inner/outer-loop join method, and 
the directions of the join for each transaction in the set 
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Output: 

• Optimal position of the clustering column for each relation with respect to the input 
information. 

Algorithm: 

1. Select one relation. 

2. Assign the clustering property to one column of the relation. 

3. Apply EVALCOST-1 to the resulting access configuration. 

4. Shift the clustering property to another column of the relation and repeat Steps 2 and 3. 

5. Repeat Step 4 until all the columns of the relation have been considered, including the 
configuration having no clustering column is also considered. Then determine the one 
that gives the minimal cost as the clustering column (or none). 

In Substep 2 the clustering property accompanies an index if the column has not been assigned 

one in the Index Selection Step. This strategy slightly enhances the accuracy of the design 

algorithms. More details on this strategy as well as other strategies enhancing the accuracy can be 

found in Appendix J.I. 

The clustering design algorithm amounts to an enumeration of all possible alternatives. However, 

because of the restriction that a relation can have at most one clustering column, the time complexity 

is only linear on the number of columns in the relation. When a virtual column is involved, there 

could be more than one clustering column in a relation since the first component column of a virtual 

column that is clustering is itself a clustering column. But, since the two columns are tightly 

interlocked, the time complexity is still linear on the number of columns (now including virtual 

columns) in the relation. 

In Phase 2 the design algorithm is extended to include the inner/outer-loop join method. Since 

the inner/outer-loop join method is nonscparable, it cannot be incorporated in Phase 1. Instead, a 

separate step (Resolve Inncr/Outcr-Ixwp Join Step) is attached to take a corrective action. Given 
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the access configuration from Phase 1, for each two-relation transaction, the best join method is 

selected. If the inner/outer-loop join method happens to be the best one, it is remembered that the 

transaction be processed by the inner/outer-loop join method in Phase 1 of the next iteration. Also 

remembered is the direction of the join. To describe the algorithm for the Resolve Inner/Outer- 

Loop Join Step, we define the function EVALCOST-2. 

Function EVALCOST-2 

Input: 

• Access configuration of the entire database. 

Output: 

• Total cost of the database. 

Side Effect: 

• Two-relation transactions that use the inner/outer-loop join method are marked, and 
their join directions recorded. 

The total cost of the database is obtained by summing up the costs of all transactions multiplied 

by their respective frequencies. For each two-relation transaction, the best join method (including 

the inner/outer-loop join method) is selected and its cost calculated. As a side effect, if the best join 

method for a transaction is the inner/outer-loop join method, a reminder is attached to the 

transaction that it must be processed by the inner/outer-loop join method in Phase 1 of the next 

iteration. This reminder is one of the elements that interfaces Phase 1 and Phase 2 conveying 

information from one phase to another. 

The following is the algorithm for Resolve Inner/Outer-Loop Join Step: 

Inner/Outer-Loop Join Step 
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Input: 

• The access configuration of the database from Phase 1. 

Output: 

• Set of transactions to be processed by the inner/outer-joop join method and the 
direction of the join for each transaction in the set. 

Algorithm: 

1. Apply EVALCOST-2 once. The desired output-will be obtained by the side effects of 
EVALCOST-2. 

The second step of Phase 2 is the Perturbation Step. This step eliminates snags in the design 

process incurred by some anomalies. One anomaly is due to the peculiar characteristics of update 

transactions; that is, in processing an update transaction, the join index always remains after Phase 1 

during the first iteration because the join index method is the only one available to resolve the join 

predicate for the relation being updated. (The sort-merge method is not allowed for the relation to 

be updated; the inner/outer-loop join method cannot be used in Phase 1 of the first iteration.) A 

problem arises in the Resolve Inner/Outer-Loop Join Step when the inner/outer-loop join is costlier 

than the join index method, but less costly if the maintenance (update) cost of the join index is 

incorporated. In this situation it would be more beneficial to use the inner/outer-loop join method 

and drop the join index. But, since the Inner/Outer-Loop Join Step does not incorporate the index 

maintenance cost, the algorithm finds the join index method less costly and lets the join index stay. 

Hence, we may never have a chance to drop the index. Simply adding the maintenance cost to that 

of the join index method will not work since the maintenance cost of an index must be shared by all 

transactions accessing that index. Therefore, in the Perturbation step, we try to drop the join index 

and compare the total transaction processing costs before and after the change. If the change proves 

to be beneficial, the join index is actually dropped. 

Another anomaly occurs because we consider the inncr/outcr-loop join method separately from 
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the other join methods. Sometimes the presence of an index favors performing the inner/outer-loop 

join in a certain direction. Dropping that index and reversing the direction of the inner/outer-loop 

join, however, may be more beneficial. But, it is impossible to consider this alternative in the 

Inner/Outer-Loop Join Step since that step is not allowed to change the access configuration. To 

solve this problem, in the Perturbation Step, we also try to drop an arbitrary index (as well as join 

indexes) and make the change permanent if it reduces the cost 

We generalize this concept and try to add an index as well as to drop one. Here, the algorithm for 

the Perturbation Step follows: 

Perturbation Step: 

Input: 

• Access configuration from Phase 1. 

• Total cost of the database obtained in the Inner/Outer-Loop Join Step. 

Output: 

• Modified access configuration of the database. 

Algorithm: 

1. Pick a column in the database. Try to drop the index if the column has one; otherwise 
add one. 

2. Obtain the total cost of the database using EVALCOST-2.  If the change reduces the 
cost, make it permanent. 

3. Repeat Steps 1 and 2 for every column in the database. 

We note that the Perturbation Step is supposed to accomplish a minor revision in the current 

access configuration to eliminate the snags that obstruct a smooth flow of the design process. Thus, 

only a small number of columns will be affected by the Perturbation Step; the affected columns 
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must be sparsely scattered, and relatively independent of one another. Accordingly, dropping or 

adding two or more indexes together is excluded from consideration. For the same reason, an 

arbitrary order is chosen in considering the columns. 

D.5.1.2 Algorithm 2 

Algorithm 2 is almost identical to Algorithm 1 except that the two steps in Phase 1 are combined 

in one design step: the Combined Index Selection and Clustering Design Step (Combined Step). 

The algorithm is described below: 

Combined Step: 

Input: 

• Set of transactions that are to be processed using the inner/outer-loop join method and 
the direction of the join for each transaction in the set. 

Output: 

• Optimal access configuration for each relation with respect to the input information. 

Algorithm: 

1. For each clustering column position in a relation, perform index selection 

2. Save the best configuration. 

As we shall see in Section D.5.2, the time complexity of Algorithm 2 is greater than that of 

Algorithm 1. The purpose of merging two steps in Phase 1 into one despite the increase in time 

complexity is to validate the heuristic of separating the two steps of Phase 1 (vertical partitioning) in 

Algorithm 1. This can be done by comparing the results from Algorithm 1 and Algorithm 2: since 

Algorithm 2 does not use vertical partitioning, if the results from the two algorithms are always 

identical, we can conclude that the deviations from the optimal solution that may exist have not been 

incurred by vertical partitioning. 
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D.5.1.3 Algorithm 3 

Algorithm 3 is different from Algorithms 1 and 2 in that it does not employ horizontal 

partitioning and, accordingly, does not rely on the property of separability. The algorithm consists 

of one phase which, in turn, is decomposed into two steps: the NS Index Selection Step and the NS 

Clustering Design Step (the prefix NS stands for "nonseparable"). The two steps design the access 

configuration of the entire database all together rather than relation by relation. All available join 

methods are incorporated. The algorithms are described below: 

NS Index Selection Step 

Input: 

• Clustering column positions determined in the NS Clustering Design Step of the last 
iteration. 

Output: 

• Optimal index set of entire database with respect to the given clustering column 
positions. 

Algorithm: 

1. Identical to the Index Selection Step except that the index set is designed for the entire 
database at the same time and using the function EVALCOST-2. 

NS Clustering Design Step 

Input: 

• Index set of the database determined in the NS Index Selection Step. 

Output: 

• Optimal positions of the clustering columns with respect to the given index set 

Algorithm: 
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1. Start with an access configuration having no clustering columns. 

2. Try to assign the clustering property to one column in the database at a time. Applying 
EVALCOST-2, find the column that yields the maximum cost benefit. 

3. Assign the clustering property to that column. 

4. Repeat Steps 2 and 3 with the constraint that one relation can have at most one 
clustering column until there is no further reduction in the cost. 

5. Starting with the access configuration from Step 4, try to assign the clustering property to 
two columns in the database at a time. One relation can have at most one clustering 
column. Applying EVALCOST-2, find the pair that yields the maximum cost benefit. 

6. Assign the clustering property to that pair. 

7. Repeat Steps 5 and 6 until there is no reduction in the cost. 

8. Repeat Steps 5, 6, and 7 with three columns, four columns,..., up to k columns (k must 
be predefined) at a time. 

As shown in Section D.5.2, the time complexity of Algorithm 3 is much greater than those of 

Algorithm 1 and 2. Yet, Algorithm 3 is necessary to validate the horizontal partitioning strategy. 

Since horizontal partitioning is based on theory, it is not a heuristic if the set of join methods 

available is separable. In Algorithms 1 and 2, however, horizontal partitioning is used even though 

the set of join methods considered is not separable because of the inner/outer-loop join method. 

This is done by using only the separable set of join methods in Phase 1 that excludes the 

inner/outer-loop join method, and by adding Phase 2 to incorporate the inner/outer-loop join 

method. Clearly, a heuristic is involved in this procedure, and it oughtto be validated. As Algorithm 

3 does not adopt horizontal partitioning, the heuristic can be validated by comparing the results 

from Algorithm 1 with that from Algorithm 3. 
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D.5.2 Time Complexities of Design Algorithms 

In this section we discuss the time complexities of the three design algorithms. Time complexities 

are estimated in terms of the number of calls to the cost evaluator (EVALCOST-1 or EVALCOST-2) 

which is the costliest operation in the design process. The actual performance measured in the test 

runs is summarized in Table 1 in Section D.5.3. 

The overall time complexity of Algorithm 1 is 0(tXvk+1) + O(tXc), where t is the number of 

transactions specified in the usage information, v the average number of columns in a relation, c the 

number of columns in the entire database, and k the maximum number of columns considered 

together in the Index Selection Step. Phase 1 contributes to the first term in the complexity; Phase 2 

to the second. 

Among the two design steps in Phase 1, the Clustering Design Step has a time complexity O(tXv) 

which is dominated by that of the Index Selection Step. In the Index Selection Step EVALCOST-1 

is called for every k-combination of columns of the relation being considered and for every 

transaction that refers to the relation. This contributes the order of (s/r)XtXvk, where r is the 

number of relations in the database and s is the average number of relations that a transaction refers 

to. (Thus, (s/r) represents die average ratio of the number of transactions referring to a particular 

relation to the total number of transactions.) This procedure is repeated until there is no further 

reduction in the cost (the number of repetitions is proportional to v). Since the entire procedure is 

repeated for every relation, the overall time complexity of Phase 1 is 0(tXvk+1) if we assume that s 

is relatively fixed. More detailed derivation of the time complexity of the Index Selection Step can 

be found in Appendix J.3. 

In Phase 2, the Resolve Inner/Outer-Loop Join Step requires only one call to EVALCOST-2; 

thus, it is dominated by the Perturbation Step. The Perturbation Step calls EVALCOST-2 for every 

column in the database and for every transaction in the usage. As a result, the time complexity of 

this step is O(tXc). Let us note that if v, die average number of columns in a relation, is relatively 

fixed, the time complexity of Algorithm 1 is linear on c, the total number of columns in the database. 
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The time complexity of Algorithm 2 is almost identical to, but slightly greater than, that of 

Algorithm 1. Since the index selection is repeated for every possible clustering column position, the 

time complexity of Phase 1 should be multiplied by v, resulting in 0(tXvk+2). Thus, the overall 

time complexity becomes 0(tXvk+2) + O(tXc). 

The time complexity of Algorithm 3 is estimated to be 0(tXck+1). Both the NS Index Selection 

Step and NS Clustering Design Step contribute the same order of complexity. The time 

complexities of both steps can be obtained by a derivation similar to the one used for the Index 

Selection Step. The only difference is that v, the average number of columns in a relation, is 

replaced by c, the number of columns in the database, since the entire database is designed all 

together. 

In summary, Algorithm 1 is the most efficient since it employs both horizontal partitioning and 

vertical partitioning. Algorithm 2 is slightly more complex than Algorithm 1 but faster than 

Algorithm 3. Although the formula for the time complexity of Phase 1 of Algorithm 1 resembles 

that of Algorithm 3, the former is significantly faster in most practical situations since c is much 

greater than v (c/v = number of relations in the database). Yet, all three algorithms are much more 

efficient compared with the Exhaustive-Search Method whose time complexity is 0(tX(v+l)rX2c). 

(See Appendix J.3 for the derivation.) 

D.5.3 Validation of Design Algorithms 

An important task in developing heuristic algorithms is their validation. Because physical 

database design is such a complex problem, finding mathematical worst-case bounds on the 

deviations from the optimality (we shall simply call them deviations) of the solutions produced by 

heuristic algorithms is virtually impossible. Consequently, we have to rely on empirical test results 

of the algorithms for their validation. In particular, we try to measure the deviations of the heuristic 

solutions from the optimal ones for various test input situations. In many cases, however, identifying 

the optimal solution itself is a difficult, often impossible, task.   For simple situations optimal 
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solutions can be obtained by exhaustively searching through all the possible alternatives. For more 

complex situations, however, an exhaustive search is practically prohibited by its exponentially 

increasing complexity. For example, an input situation consisting of twelve columns in five relations 

and twelve transactions generates 1.66 million possible access configurations. (It took a 

DECSYSTEM-20 26 hours of CPU time to find the optimal solution.) We have the following 

strategy for the validation of the design algorithms: 

1. For simple situations the optimal solutions are obtained by exhaustively searching 
through all the possible access configurations. The optimal solutions are subsequently 
compared with the solutions generated by the design algorithms. 

2. For more complex situations the solutions from Algorithms 1, 2, and 3 are considered to 
be optimal if all three are identical. 

The second rule is based on the discussions in Sections D.5.1.2 and D.5.1.3. In essence, the rule is 

valid because it is very unlikely that different sources of deviations (i.e., heuristics) can cause exactly 

the same deviations. 

The three design algorithms were tested with 21 different input situations (seven different 

Schemas with three variations of usage inputs), and the results are summarized in Table 1. In the 

first column the first digit of the input situation number represents the schema, and the second the 

usage input In the description, r stands for the number of relations, c the number of columns in the 

database, and t the number of transactions in the usage input. The CPU time shows the 

performance of the algorithms when run in a DECSYSTEM-20. Marked by "*" are the situations in 

which any deviation occurred. In most situations tested all three algorithms produced optimal 

solutions. Even in the situations that produced nonoptimal solutions, the deviations were far from 

being significant. (Algorithm 1 yielded 3.1% of deviation in Situation 50 and 6.6% in Situation 42; 

Algorithm 3 yielded 6.6% in Situation 42. These situations are fully analyzed in J.4.) 

As we can see in Table 1, an exhaustive search takes excessive computation time even with small 

input situations; in comparison, all three algorithms are far more efficient without significant loss of 

accuracy. For a very large database (such as the one consisting of 250 relations and 5000 columns), 
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Table 1: Performance and Accuracy of Design Algorithms 

|Input Description CPU time( s:seconds;m: minutes;h: hours;y:years)| 

jSitua- 
tion Algorithml| Algorithm2| Algorithm3| Ex.Search| 

| 10 2r,  6c, 7t 0.86s | | 1.25s | | 1.83s ! | 26.91s  | 

| 20 4r,  9c,10t| 1.23s | | 1.48s | | 5.41s 1 | 36.75m  j 

| 30 4r, 12c.12t 2.09s | | 3.44s | |10.51s | 13.93h   j 

| 40 4r, llc,13t 2.04s | | 2.73s | | 6.62s |  3.65h   j 

| 50 5r, 12c,12t 2.32s | < ► | 4.89s | I12.51S j 25.85h   j 

| 60 4r, llc,15t 2.63s | | 3.54s | |13.93s |  8.52h   j 
j 1035 y>  j 1 70 16r,110c,81t 1.63m | | 4.80m | | 2.00h 

1 11 2r,  6c, 7t 0.84s | | 1.26s | | 1.81s | 26.46s   | 

1 21 4r,  9c,10t 1.35s | | 1.67s | | 5.91s | 42.83m  j 

1 31 4r, 12c,12t 2.17s | | 3.43s | |10.67s | 14.00h   j 

1 41 4r, llc,13t 1.42s | | 1.88s | | 9.90s |  3.62h   | 

1 51 5r, 12c,12t 3.54s | | 5.00s | |13.13s j 26.63h   j 

1 61 4r, llc,15t 2.71s | | 3.74s | |21.51s |  8.04h   | 
| 1035 y*  | 

1 71 16r,110c,81t 2.13m | | 4.60m | | 2.02h 

1 I2 2r,  6c, 5t 0.57s | | 0.86s | | 1.23s | 17.23s   | 

| 22 | 4r,  9c, 5t 0.43s | | 0.55s | | 1.50s j 10.43m  j 

| 32 | 4r, 12c, 6t | 1.08s | | 1.73s | | 4.65s j  5.95h   j 

1 42 | 4r, lie, 6t | 0.25s | * | 0.43s | | 0.95s * | 29.95m  j 

1 52 | 5r, 12c, 8t | 1.49s | | 2.41s | | 5.04s j  9.95h   j 

| 62 | 4r, lie, 6t | 1.23s | | 1.81s | | 3.72s 1   1  2.12h   | 
1  1 io35 yT I 1 72 |16r,110c,38t [21.76s | | 1.77m | |24.40m 

f Values are estimated. 
* Situations that produced nonoptimal solutions. 

however, even Algorithm 3 can become intolerably time-consuming.  In these cases Algorithms 1 

and 2, which are based on the theory of separability, are the only algorithms applicable. When a 

very large database is involved, the entire physical database design somehow has to be partitioned to 

achieve a reasonable performance in the design process.   The theory of separability provides a 

theoretical background to achieve this goal: it provides a clean partitioning and allows us to avoid 

overreliance on heuristics which are often difficult to validate. 
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D.6 Summary and Conclusion 

Three algorithms have been presented for the optimal physical design of multifile relational 

databases. Each algorithm employs different techniques for partitioning the search space to reduce 

the time complexity and is compared to the other algorithms to validate the heuristics involved. All 

three algorithms are far more efficient without significant loss of accuracy than the approach of 

exhaustively searching through all possible alternatives. 

It has been emphasized that the entire design has to be properly partitioned when a very large 

database is considered. The theory of separability provides a theoretical basis for this partitioning 

and allows us to avoid overreliance on heuristics which are often difficult to justify. (Previous work 

[WHA-b 82] has shown that the theory can also be applied to network model databases.) 

The primary contribution of this paper is to pioneer the research on the automatic design of 

multifile physical databases. The multifile physical design problem has long been considered 

"difficult" [LUM 78]. Consequently, to the extent of the author's knowledge, no other successfully 

tested algorithm has been reported. (One was presented in [SCH 79], but the issue on its validity has 

not been addressed.) We believe that our approach can enable substantial progress to be made 

towards the optimal design of multifile physical databases. 
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Appendix E. Transaction-Processing Costs in 
Relational Databases 
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have been moved to the end of the thesis. 

-110- 



APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES 

Transaction Processing Costs in Relational Database Systems 

by 
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Abstract 

Accurate estimation of transaction processing costs is important for both query 
optimization and physical database design. Although cost formulas have been partially 
developed in many articles, it appears that in no place a comprehensive set of cost 
formulas have been introduced. In this paper a complete set of formulas for estimating 
the costs of queries, update, insertion, and deletion transactions is developed. The costs 
are measured in terms of the number of disk accesses. Although the cost formulas are 
based on the specific model proposed, the underlying ideas can be easily extended to 
other models of database systems. 

E.1 Introduction 

Since the relational model of data was introduced by Codd [COD 70], many relational database 

management systems (DBMS) have been implemented [KIM 79]. A standadizing effort on 

relational systems is summarized in [BRO 82]. One of the important characteristics of most 

relational DBMS's is the optimizer which automatically translates the transactions expressed in a 

nonprocedural language to an optimal sequence of access operations to evaluate the transactions. In 

these systems the user need not know the physical structure of the database. Instead, the optimizer 

estimates the cost of each possible alternative for processing die transaction based on the given 

physical structure of the database and figures out the minimum-cost sequence of access operations. 

This procedure has been generally known as query optimization. Various algorithms for query 

optimization have been extensively studied in [SMI 75] [PEC 75] [GOT 75] [BLA 76] [YAO 79] [SEL 

79]. 

This work was supported by the Defense Advanced Research Project Agency under the KBMS Project, Contract 
N39-82-C-0250. 

Author's current address: Computer Systems Laboratory ERL 416, Stanford University, Stanford, California 94305 

111- 



APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES 

A related issue that has a critical effect on the database performance is physical database design. 

The problem addresses the optimal configuration of the physical database so that the minimum 

average transaction processing cost is optained [SCH 75] [HAM 76] [KAT 80] [SCH 79] [WHA-a 81]. 

The information on the physical database will be used by the optimizer at run time to estimate the 

costs of processing transactions. 

In both problems-query optimization and physical database design-an accurate cost model is 

needed to predict the costs of transaction-processing alternatives. Various cost models have been 

developed in [HSI 70] [CAR 75] [SEV 75] [BLA 76] [YAO-a 77] [GER 77] [YAO 79] [SEL 79] [SCH 

81]. But, in many of them, cost formulas are either only partially developed-either only for queires 

or only for update transactions-or too much abstracted to be useful in practical systems. 

The purpose of this paper is to introduce a comprehensive set of formulas for estimating the costs 

of processing queries, update, insertion, and deletion transactions in relational database systems that 

support the clustering (records are clustered if they are stored in the order of values of a column) and 

indexes. The costs are measured in terms of the number of disk accesses needed for processing 

transactions. 

In Section E.2 we introduce key assumptions and the model of the storage structure. Section 

E.3 describes the general class of transactions and the transaction processing methods that we 

consider. Terminology is defined in Section E.4 to help understand the interactions among different 

relations in evaluating transaction-processing costs. Elementary cost formulas are developed in 

Section E.5. Finally, the transaction-processing costs are developed in Section E.6 as composites of 

elementary cost formulas. 
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E.2 Assumptions and the Model of Storage Structure 

E.2.1 General Assumptions 

The database is assumed to reside on disk-like devices. Physical storage space for the database is 

divided into fixed-size units called blocks [WIE 83]. The block not only is the unit of disk allocation 

but also is the unit of transfer between main memory and disk. We assume that a block that contains 

tuples of a relation contains only the tuples ofthat relation. For simplicity, we assume that a relation 

is mapped into a single file. Accordingly, from now on, we will use the terms file and relation 

interchangeably; nor shall we make any distinction between an attribute and a column or between a 

tuple and a record. 

We assume that no block access will be incurred if the next tuple (or index entry) to be accessed 

resides in the same block as that of the current tuple (or index entry); otherwise, a new block access 

is necessary. We also assume that all TID (tuple identifier) manipulations can be performed in main 

memory without any need for I/O accesses. 

We consider only one-to-many (including one-to-one) relationships between relations. It is 

argued in [WHA-b 81] that many-to-many relationships between relations are less important for the 

optimization purpose. Note that here we arc dealing with relationships in relational representations 

based on the equality of join-attribute values; a relationship among distinct entity sets at the 

conceptual level is often structured with an additional intermediate relation [ELM 80]. 

Finally, we consider only one-variable (one-relation) or two-variable (two-relation) transactions. 

The cost for a transaction of more than two variables can be obtained by decomposing it into a 

sequence of two-variable transactions. (This corresponds to one-overlapping queries in [WON 76].) 
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E.2.2 Storage Structure of the Data File 

A relation can be sorted according to the order of certain column values (say column A). We say 

that column A is the clustering column or that column A has the clustering property. A relation can 

have only one clustering column since clustering requires a specific order for storing tuples. 

In each block of a file there are slots that contain the byte offsets of data tuples stored in that 

block. The addresses of these slots are called tuple identifiers (TID), and the tuples are located by 

TIDs. The TID slots provide a level of indirection so that the TIDs remain unchanged even though 

the tuples are shuffled in the block according to update, insertion, or deletion operations. When a 

new tuple is inserted, a TID slot that is the nearest to the desired place is chosen. This strategy saves 

the cost of shuffling data tuples and changing pointers to them. Even though this strategy may not 

keep the file strictly sorted according to the clustering column values, it keeps the tuples having close 

values near one another. 

E.2.3 Storage Structure of the Index 

A B+-tree index [COM 79] can be defined for a column of a relation. The leaf-level of the index 

consists of (key, TID) pairs for every tuple in that relation and the leaf-level blocks are chained so 

that the index can be scanned without traversing the index tree. Enüies having the same key value 

are ordered by TID. An index is called a clustering index if it is defined for a clustering column. We 

assume that no block is fetched more than once when tuples are retrieved by sequentially scanning 

the clustering index. When index entries are inserted or deleted, we assume that, compared with the 

accesses to the index blocks themselves, splits or mergers of index blocks are rather infrequent 

because these happen only when an index block is either completely full or empty; hence we assume 

that modifications are mainly done on the leaf-level blocks. 
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E.3 Transaction Evaluation 

E.3.1 Queries 

The class of queries we consider is shown in Figure E-l. The conceptual meaning of this class of 

queries is as follows. Tuples in relation Rx are restricted by restriction predicate Pr Similarly, 

tuples in relation R2 are restricted by predicate P2. The resulting tuples from each relation are 

joined according to the join predicate RrA = R2.B, and the result is projected over the columns 

<list of attributesX We call the columns that are involved in the restriction predicates restriction 

columns, and those in the join predicate join columns. The actual implementation of this class of 

queries does not have to follow the order specified above as long as it produces the same result 

SELECT <listofattributes> 
FROM    Rr R2 

WHERE RrA = R2.B AND 
P1 AND 
P2 

Figure E-l:  General Class of Queries Considered. 

Query evaluation algorithms, especially for two-variable queries, have been studied in [BLA 76] 

and [YAO 79]. The algorithms for evaluating queries differ significantly in the way they use join 

methods. Before discussing the various join methods, let us define some terminology. Given a 

query, an index is called a join index if it is defined for the join column of a relation. Likewise, an 

index is called a restriction index if it is "defined for a restriction column. We use the term subluple 

for a tuple that has been projected over some columns. The restriction predicate in a query for each 

relation is decomposed into the form Q1 A Q2, where Qx is a predicate that can be processed by 

using indexes, while Q, cannot. Q2 must be resolved by accessing individual records. We shall call 

Q. the index-processible predicate and Q2the residual predicate. 

Some algorithms for processing joins that are of practical importance are summarized below (see 

also [BLA 76] [SEL 79]): 
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• Join Index Method: This method presupposes the existence of join indexes. For each 
relation, the TIDs of tuples that satisfy the index processible predicates are obtained by 
manipulating the TIDs from each index involved; the resultant TIDs are stored in 
temporary relations Rx' and R2'. TID pairs with the same join column values are found 
by scanning the join column indexes according to the order of the join column values. 
As they are found, each TID pair (TIDr TID2) is checked to determine whether TIDj is 
present in R^ and TID2 in R2'. If they are, the corresponding tuple in one relation, say 
Rp is retrieved. When this tuple satisfies the residual predicate for Rr the corresponding 
tuple in the other relation R2 is retrieved and the residual predicate for R2 is checked. If 
qualified, the tuples are concatenated and the subtuple of interest is constructed. (We 
say that the direction of the join is from Rx to R2.) 

• Sort-Merge Method: The relations Rx and R2 are scanned-either by using restriction 
indexes, if there is an index-processible predicate in the query, or by scanning the 
relation directly-and temporary relations Tx and T2 are created. Restrictions, partial 
projections, and the initial step of sorting are performed while the relations are being 
initially scanned and stored in Tx and T2. Tj and T2 are sorted by the join column 
values. The resulting relations are scanned in parallel and the join is completed by 
merging matching tuples. 

• Combination of the Join Index Method and the Sort-Merge Method: One relation, say 
Rl, is sorted as in the sort-merge method and stored in Tr Relation R2 is processed as in 
the join index method, storing the TIDs of the tuples that satisfy the index processible 
predicates in R2'. T1 and the join column index of R2 are scanned according to the join 
column values. As matching join column values are found, each TID from the join 
index of R2 is checked against R2'. If it is in R2', the corresponding tuple in R2 is 
retrieved and the residual predicate for R2 is checked. If qualified, the tuples are 
concatenated and the subtuple is constructed. 

• Inner/Outer-Loop Join Method: In the two join methods described above, the join is 
performed by scanning relations in the order of the join column values. In the 
inner/outer-loop join, one of the relations, say Rp is scanned without regard to order, 
either by using restriction indexes or by scanning the relation directly, and, for each 
tuple of Rx that satisfies predicate Pp the tuples of relation R2 that satisfy predicate P2 

and the join predicate are retrieved and concatenated with the tuple of R.. The 
subtuples of interest are then projected upon the result. (We say the direction of the join 
is from R, to R2.) 

Let us note that, in the combination of the join index method and the sort-merge method, the 

operation performed on either relation is identical to that performed on one relation in the join 

index method or in the sort-merge method. We call the operations performed on each relation join 

index method (partial) or sort-merge method (partial), respectively; whenever no confusion arises, we 

call these operations simply join index method or sort-merge method. According to the definitions, 
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the join index method actually consists of two join index methods (partial) and, similarly, the 

sort-merge method consists of two sort-merge methods (partial). 

E.3.2 Update Transactions 

We assume that the updates are performed only on individual relations, although the qualification 

part (WHERE clause) may involve more than one relation. Thus, updates are not performed on the 

join of two or more relations. (If they are, ambiguity may arise on which relations to update [KEL 

81].) The class of update transactions we shall consider ig shown in Figure E-2. 

UPDATE Rx 

SET RrC = <new value> 
FROM     Rr R2 

WHERE  RrA = R2.B AND 
P1 AND 
P2 

Figure E-2:  General Class of Update Transactions Considered. 

The conceptual meaning of this class of transactions is as follows. Tuples in relation R2 are 

restricted by restriction predicate P2. Let us call the set of resulting tuples T2> Then, the value for 

column C of each tuple in R. is changed to <ncw value> if the tuple satisfies the restriction predicate 

Pj and has a matching tuple in T2 according to the join predicate. In a more familiar syntax [CHA 

76], the class of update transactions can be represented as in Figure E-3. The equivalence of the two 

representations (only for queries) has been shown in [KIM 82]. 

UPDATE Rx 

SET RrC = <new value> 
WHERE   P1        AND 

RrA     IN 
(SELECT R2.B 
FROM    R2 

WHERE P2 ) 

Figure E-3:  An Equivalent Form of the General Class of Update Transactions. 
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Deletion transactions are specified in an analogous way. It is assumed that insertion transactions 

refer only to single relations. From now on, unless confusion may occur, we shall refer to update, 

deletion or insertion transactions simply as update transactions. 

The update transaction in Figure E-2 can be processed just like queries except that an update 

operation is performed instead of concatenating and projecting out the subtuples after relevant 

tuples are identified. In particular, all the join methods described in Section E.3.1 can be used for 

update transactions as well. But, there are two constraints: 1) The sort-merge method cannot be 

used for the relation to be updated since it is meaningless to create a temporary sorted file for that 

relation. 2) When the inner/outer-loop join method is used, the direction of the join must be from 

the relation to be updated (R,) to the other relation (R2) because, if the direction were reversed, the 

same tuple might be updated more than once. Let us note that, although two-relation update 

transactions are not joins, the join predicates-which relate two relations— they have can be 

processed with the join methods defined for processing joins. 

E.4 Terminology 

E.4.1 Notation 

R 
Other(R) 
C 
nR 

PR 

cc 
mR 

im, 
t 
H, t,R 

: A relation. 
: The relation to be joined with R. 
: A column. 
: Number of tuples in relation R (cardinality). 
: Blocking factor of relation R. 
: Blocking factor of the index for column C. 
: Selectivity of column C or its index 
: Subscript for the clustering column. 
: Number of blocks in relation R, which is equal to nR/pR- 
: Number of blocks that the index for column C occupies. 
: A transaction 
: Projection factor of transaction t on relation R. 

- 118- 



APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES 

E.4.2 Definition of Terms 

Definition 1: The join selectivity JSELR Jp of a relation R with respect to a join path JP is the ratio 

of the number of distinct join column values of the tuples participating in the unconditional join to 

the total number of distinct join column values of R. A join path is a set (Rp RrA, R2, R2.B), where 

R, and R, are relations participating in the join and RrA and R2.B are join columns of Rx and R2. 

An unconditional join is a join in which the restrictions on either relation are not considered. O 

Join selectivity is the same as the ratio of the number of tuples participating in the unconditional 

join to the total number of tuples in the relation (cardinality of the relation). Join selectivity is 

generally different in Rx and R2 with respect to a join path as shown in the following example: 

Example 1: Let us assume that the two relations in Figure E-4 have an 1-to-N partial-dependency 

relationship. Partial dependency means that every tuple in the relation R2 that is on the N-side of 

the relationship has a corresponding tuple in Rp but not vice versa [ELM 80]. Let us assume that 

50% of the countries have at least one ship so that the tuples representing those countries participate 

in the unconditional join. Every tuple in the SHIPS relation (R2) participates in the unconditional 

join according to the partial dependency. The join selectivity of the COUNTRIES relation is then 

0.5, while that of the SHIPS relation is 1.0. D 

Rx        COUNTRIES(Countryname, Population) 

R2        SHIPS(ShipId, Country, Crewsize, Deadweight) 

Figure E-4:  COUNTRIES and SHIPS relations 

Definition 2: The coupling effect (partial coupling effect) from relation Rx to relation R2, with 

respect to each transaction, is the ratio of the number of distinct join column values of the tuples of 

Rr selected according to the restriction predicate (index-proccssible predicate) for Rp to the total 

number of distinct join column values in Rr D 
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If we assume that the join column values are randomly selected, the coupling effect (partial 

coupling effect) from Rx to R2 is the same as the ratio of the number of distinct join column values 

of R2 selected by the effect of the restriction predicate (index-processible predicate) for Rx to the 

total number of distinct join column values in R2 participating in the unconditional join. 

Definition 3: A coupling factor Cf^ (partial coupling factor PCf12) from relation Rx to relation R2 

with respect to a transaction is the ratio of the number of distinct join column values of R2, selected 

by both the coupling effect (partial coupling effect) from Rx (through the restriction predicate for 

Rx) and the join selectivity of R2, to the total number of distinct join column values in R,. D 

According to the definition, a coupling factor can be obtained by multiplying the coupling effect 

(partial coupling effect) from Rx to R2 by the join selectivity of R2. 

Definition 4: A partial-join cost is the part of the join cost that represents the accessing of only one 

relation as well as the auxiliary structures defined for that relation. D 

Definition 5: A partial-join algorithm is a conceptual division of the algorithm of a join method 

whose processing cost is a partial-join cost. D 

Definition 6: The restricted set of relation R with respect to a transaction is the set of tuples of R 

selected according to the restriction predicate for R. D 

Definition 7: The partially restricted set of relation R with respect to a transaction is the set of 

tuples of R selected according to the index-processible predicate for R. D 

Definition 8: The coupled set of relation Rx with respect to a transaction is the set of tuples in R. 

selected according to the coupling factor from R2. D 

Definition 9: The partially coupled set of relation R, with respect to a transaction is the set of 

tuples of Rx selected according to the partial coupling factor from R2< D 
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Definition 10: The result set of relation R with respect to a transaction is the intersection of the 

restricted set and the coupled set. Thus, the tuples in the result set satisfy all the predicates in a 

transaction. D 

Definition 6 to Definition 10 define various subsets of the relation according to the predicates 

they satisfy.   In Figure E-5 these subsets are graphically illustrated.   Cardinalities of subsets of 

relation Rj can be obtained as follows: 

|restricted set| = nR X Selectivity of the restriction predicate 

Ipartially restricted set| = nR X Selectivity of the index-processible predicate 

|coupled set| = nR X Cf21 

Ipartially coupled set| = nR X PCf21 

|result set| - nR X Cf21 X Selectivity of the restriction predicate 

To estimate the selectivities of the predicates, we use the following simple scheme. If a predicate 

is the conjunction of simple predicates that involve single columns, its selectivity can be obtained by 

multiplying the selectivities of those simple predicates. The selectivity of a simple equality predicate 

is estimated as the inverse of the number of distinct values in the related column (column 

cardinality). For a simple range predicate, which involves operators such as <, <, >, >, the 

selectivity is arbitrarily estimated as 1/4. (A more elaborate interpolation scheme can be employed 

if the highest and the lowest values in the column are known.) Estimating the selectivities of more 

general predicates has been studied in [DEM 80]. 

We now introduce a function that estimates the number of block accesses when randomly selected 

tuples are retrieved in TID order. Various formulas have been proposed for this function [CAR 75] 

[ROT 74] [SEV 72] [SIL 76] [WAT 72] [WAT 75] [WAT 76] [YAO-b 77] [YUE 75]. In particular, 

Yao [YAO-b 77] presented the following theorem: 

Theorem 1: [YAO] Let n records be grouped into m blocks (l<m<n), each containing p = n/m 

records. If k records arc randomly selected from the n records, the expected number of blocks hit 

(blocks with at least one record selected) is given by 
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Figure E-5:  Various Subsets of a Relation. 
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b(m,p,k)=m[l-(£-")/(£)] (E.1) 

= m[l - ((n-p)!(n-k)!)/((n-p-k)!n!)] 

=m[l - nf=1(n-p-i+l)/(n-i+l)] 

whenk<n—p, and 

b(m,p,k)=m when k > n - p. 

The function is approximately linear on k when k«n and approaches p as k becomes large. 

Variations of this function and approximation formulas for faster evaluation are summarized in 

[WHA-a 82]. Let us note that the function is invalid if m<l. 

E.5 Elementary Cost Formulas 

To formulate the transaction-processing costs, we first develop cost formulas for elementary 

operations. Elementary cost formulas mainly concerns the costs related to a single relation and its 

auxiliary access structures. 

When more than one tuple (or index entry) is retrieved or updated, the relative order of accessing 

those tuples (or index entries) becomes important in determining the cost. Below, we define four 

types of ordering: 

• TID order: Tuples (or index entries) are accessed according to the order of TID. TID 
order can be achieved when a relation or an index is scanned or when tuples are accessed 
with matching keys through one or more indexes. Let us note that the index entries 
having the same key value are ordered by TID. 

• Random order: Tuples (or index entries) are randomly accessed without any specific 
order. 

• Clustering column order: Tuples are accessed by scanning the clustering index. This 
ordering specifies the orders of accessing both data tuples and index entries: both are 
accessed in TID order. This ordering differs from TID order of accessing tuples in that, 
when a tuple is accessed, the location of the corresponding entry in the clustering index 
is already known. We define both TID order and clustering column order as physical 
order. 
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»Ordering column order: Tuples are accessed by scanning the index of the ordering 
column. This ordering specifies the orders of accessing both data tuples and index 
entries: tuples are accessed in random order; index entries in TID order. As in clustering 
column order, when a tuple is accessed, the location of its corresponding entry in the 
ordering index is already known. This ordering occurs when the join index method is 
used to resolve the join predicate; here, the join column becomes the ordering column. 

Elementary cost formulas are now introduced in the form of functions in the following. Each 

function will be followed by subsequent explanation on how it has been derived. In calculating the 

cost of a query, we do not include the cost of writing the result since that cost is common to all 

alternative processing methods and is irrelevant for optimization purposes. 

•   function IA(C,R,mode): Index Access Cost-cost for accessing the index tree starting from 

the root 

A. mode = Query mode 

IA = pogL nRl + ("FcXnR/Lc] (E.2) 

B. mode = Insertion mode 

IA = pogLcnRl + l 

C. mode = Update mode 

IA = riogL nRl + [0.5XFcXnR/Lcl 

The function IA has three modes depending on the purpose of accessing the index. In query 

mode all the index entries having the same key value are retrieved. The first term in Equation 

(E.2) is the height of the index tree, and the second the number of leaf-level index blocks accessed. 

In insertion mode, an index entry corresponding to the inserted tuple is placed after the last entry 

having the same key value; thus, only one leaf-level block will be accessed. In update mode, the 

index entries containing the old value have to be searched to find the one having the TID of the 

updated tuple; thus, on the average, about half of those index entries will be searched. 

•    function IS(C,R): Index Scan Cost-cost for serially scanning the leaf-level blocks of an 

entire index. 
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IS = rnR/Lc] 

• function Sort(NB,z): Sorting Cost-cost for sorting a relation, or a part thereof, according 

to the values of the columns of interest. 

SORT = 2X[NB1 + 2X[NBlX[logjNBH 

Function Sort represents the cost of an external sort using the z-way sort merge [KNU-b 73]. NB 

is the number of blocks in the temporary relation containing the subtuples to be sorted after 

restriction and projection have been resolved. It will be noted that function Sort does not include 

the initial scanning cost to bring in the original relation, while it does include the cost to scan the 

temporary relation for the actual join after sorting (see [BLA 76]). 

• function Single-Query(R,t,mode): Single-Relation Querying Cost- cost for retrieving 

tuples that satisfy the restriction predicates from a single relation. 

A. If no restriction index is clustering 

Single-Query = b(mR,pR,|partially restricted set|) (E.3) 

+ 2 IA(C,R,query mode) 
C€ {all restriction columns having indexes} 

B. If any restriction index is clustering 

a. whenF^Xm^l 

Single-Query = b(FccXmR,pR,|partially restricted set|) (E.4) 

+ 2 IA(C,R,query mode) 
C€{all restriction columns having indexes} 

b. when FttXmR<l 

Single-Query = F^Xba/F^F^Xn^lpartially restricted seüVF^) (E.5) 

+ 2 IA(C,R,query mode) 
C€{all restriction columns having indexes} 

The function Single-Query has two modes: "join column included" and "join column not 
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included". In the former mode-the join predicate is treated as another restriction predicate. 

Accordingly, the join column becomes a restriction column, and the join index becomes a restriction 

index. The partially restricted set also has to be modified. This mode is useful when considering the 

cost of the inner/outer-loop join method. In this method, a value is substituted for the join attribute 

of Other(R). Resolving the join predicate for relation R then becomes a simple restriction. 

Single-relation queries are processed as follows: Each restriction index is accessed in query mode 

to obtain the list of TIDs satisfying the corresponding simple restriction predicate. The intersection 

of these TID lists is formed subsequently to locate tuples satisfying the index-processible predicate. 

The first terms in Equations (E.3), (E.4), and (E.5) represent the cost of accessing data tuples; the 

second the cost of accessing indexes. 

We have two cases in calculating the cost of accessing data tuples. If no restriction index is 

clustering, the tuples in the partially restricted set will be spread all over mR blocks. Since they are 

accessed in TID order, we obtain the first term of Equation (E.3). On the other hand, if one of the 

restriction indexes is clustering, the tuples to be retrieved are confined in F^Xn^ blocks (let us call 

this a selected area). Since tuples are accessed in TID order within the selected area, if F XmD>l, 
CC j£—.. 

we obtain the first term of Equation (E.4). If F XmD<l, however, the "b" function becomes 

invalid, and we need an alternative derivation. Let us assume that the selected area resides within a 

physical block (i.e., we ignore the case in which the selected area resides on the border of two blocks) 

and imagine that the file is divided into (1/F^) logical blocks of the same size as the selected area. 

Then, the probability that the selected area will be hit when all the restriction predicates except for 

the one matching the clustering index are applied can be obtained as the first term of Equation (E.5). 

It is also the probability that the physical block containing the selected area will be hit Since this 

physical block is the only one that can be possibly be accessed, the number of physical blocks to be 

hit is equivalent to this probability. 

•   function Sort-Mcrgc(R,t): Partial Sort-Merge Join Cost-cost for joining the relation R with 

another using the sort-merge join method(partial). 
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Sort-Mergc = Single-Query <R,t join column not included) + Sort(NB), 

where 

NB = flrestricted set|/nR)XHuRXmR. 

First, tuples in the partially restricted set are retrieved using the restriction indexes (this 

corresponds to a single-relation query). Those tuples are sorted and stored in a temporary relation 

after the residual predicate and the projection are resolved; the temporary relation is subsequently 

read in for an actual join. The term Sort(NB) includes all the cost for this operation. 

•    function Join-Index(R,t,Cf): Partial Join-Index Join Cost-cost for joining relation R with 

another using the join index method(partial). 

Join-Index = Index Read Cost + Data Read Cost 

(Index Read Cost) 

Index Read Cost = 2 IA(C,R,query mode) + IS(join index, R) 
C€{all restriction columns having indexes} 

(Data Read Cost) 
A. If the join index is nonclustering 

Data Read Cost = Cf X |partially restricted set| (E.6) 

B. If the join index is clustering 

Data Read Cost = b(mR,Pi;..CfX|partially restricted set|) 

Here, the parameter Cf can be cither the coupling factor or the partial coupling factor from 

relation Othcr(R) to relation R. If the tuples of R are accessed first during the join operation, Cf is a 

partial coupling factor since only the index-processible predicate for Other(R) can be resolved 

before tuples of R are accessed. On the other hand, if the tuples of Other(R) are accessed first, Cf 

must be a coupling factor since full restriction predicate is resolved for Othcr(R) beforehand. In 

either case, Cf can be treated as yet another restriction factor as far as relation R is concerned. It will 
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be noted that, if all restriction columns have indexes, the partial coupling factor is equivalent to the 

coupling factor. 

The Partial Join-Index Join Cost consists of two parts: Index Read Cost and Data Read Cost. 

The cost of reading relevant indexes (Index Read Cost) includes the cost of accessing all restriction 

indexes and the cost of scanning the join index. The cost of retrieving tuples from the relation (Data 

Read Cost) differs according to whether the join index is clustering or not. If the join index is not 

clustering, tuples are retrieved in random order as the join index is scanned. Since one block access 

is necessary for each tuple, we obtain Equation (E.6). If the join index is clustering, since tuples are 

retrieved in TID order, the "b" function has to be employed. 

•      function Inner/Outer(R,t,To-or-From): Partial Inner/Outer-Loop Join Cost-cost for 

joining relation R with another using the inner/outer-loop join method(partial). 

A. To-or-From = From 

Inner/Outer = Single-Query(R,t join column not included) 

B. To-or-From = To 

Inner/Outer = [restricted set of Other(R)| X JselQth ,R)X 

Single-Query(R,tjoin column included) 

+ Irestricted set of Other(R)| X(l - Jsel0the ,R))X 

2 IA(C,R,qucry mode) 
C€{all restriction columns and the join column having indexes} 

The cost of the inner/outer-loop join method differs depending on the join direction, which is 

determined by the parameter To-or-From. If the join direction is from R to Othcr(R) (To-or-From 

= From), the processing cost for R simply becomes that of a single-relation query with the mode 

"join index not included". However, if the join direction is reversed (To-or-From = To), the cost 

for R can be obtained, in principle, by summing up the costs of single-relation queries each of which 

is associated with a tuple in the restricted set of Other(R). The cost formula consists of two terms. 
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The first term is multiplied by the function Single-Query with the mode "join column included". 

But, the second term is multiplied by the access costs of indexes only, because the single-relation 

queries corresponding to the tuples of Other(R) having join column values nonexistent in R will 

retrieve no data tuples. 

•      function Delete(R,t,order,Ntuples-dcletcd): Deletion Cost-cost for deleting Ntuples- 

deleted tuples from relation R according to the order specified in parameter "order". 

Delete = Data Write Cost + Index Read/Write Cost 

A. Deletion is performed in physical order 

(Mfactor = 1 if deletion is performed in clustering column order.) 

(M factor = 2 if deletion is performed in TID order.) 

A.l. If no restriction column is clustering 

(Data Write Cost) 

Data Write Cost = b(mR,pR,Ntuples-deleted) (E.7) 

(Index Read/Write Cost) 

a. If the clustering column does not have an index or there is no clustering column 

Index Read/Write Cost = Ntuples-deleted X 2 [IA(C,R,updatemode)+l] 
C€{all columns having indexes} 

b. If the clustering column has an index 

Index Read/Write Cost = Ntuples-deleted X 

2 [IA(C,R,update mode)+1] 
C€{all columns having indexes except for the clustering column} 

+ MfactorXb(imcc,Lcc,Ntuples-deleted) 

A.2. If a restriction column is clustering 

(Data Write Cost) 

a. whcnF XmD>l 
CC K^ 

- 129- 



APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES 

Data Write Cost = b(FccXmR,pR>Ntuples-deleted) (E.8) 

b. when F XmD<l 
CC K 

Data Write Cost = F^Xba/F^F^Xn^Ntuples-deleted/F^) (E.9) 

(Index Read/Write Cost) 

a. If the clustering column does not have an index 

Index Read/Write Cost = Ntuples-deleted X 2 [IA(C,R,updatemode)+l] 
C€{all columns having indexes} 

b. If the clustering column has an index 

b.l. whenF Xim  >1 cc       cc— 

Index Read/Write Cost = Ntuples-deletedX 

2 [IA(C,R,update mode)+1] 
C€{all columns having indexes except for the clustering column} 

+ Mfactor X b(FccXimcc,Lcc,Ntuples-deleted) 

b.2. whenF Xim <1 cc       cc 

Index Read/Write Cost = Ntuples-deletedX 

2 [IA(C,R,updatemode)+l] 
C€{all columns having indexes except for the clustering column} 

+ MfactorXFccXb(l/Fcc,FccXnR,Ntuples-deleted/Fcc) 

B. Deletion is performed in ordering column order. 

(Data Write Cost) 

Data Write Cost = Ntuples-deleted (E.10) 

(Index Read/Write Cost) 

B.l. If the ordering column is not a restriction column 

Index Read/Write Cost = Ntuples-deletedX 

2 [IA(C,R,update mode)+1] 
C€{all columns having indexes except for the ordering column} 
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B.2. If the ordering column is a restriction column 

^W^F'orderco^^ordercol^1 

Index Read/Write Cost = Ntuples-deletedX 

2 [IA(C,R,update mode)+1] 
C€{all columns having indexes except for the ordering column} 

+ border colXimordercol'Lordercol'NtUPleS-deleted) 

b-^Fordercol^order«/1 

Index Read/Write Cost = Ntuples-deletedX 

2 [IA(C,R,updatemode)+l] 
C€{all columns having indexes except for the ordering column} 

+ Fordcr colXb^1/Forder col,Forder colXnR' 

Ntuples-deleted/FordercoI) 

The deletion cost consists of two parts: Data Write Cost and Index Read/Write Cost. The former 

is the cost of writing the modified data blocks out to the disk. (In formulating the deletion cost, the 

data blocks are assumed to have already been read in the main memory.) For each tuple deleted, the 

corresponding index entry should also be deleted. Thus, the latter cost includes the cost of reading 

in the index blocks to be modified and the cost of writing them back to the disk. 

The Data Write Cost differs according to the order of deleting the tuples. If deletion is performed 

in physical order, the "b" function has to be employed in all cases; we have two subcases. If no 

restriction column is clustering, tuples can be deleted from any one of the mR blocks; thus, we 

obtain Equation (E.8). On the other hand, if any restriction column is clustering, tuples to be 

deleted are confined in F XmR blocks. Hence, if F XmR>l, we obtain Equation (E.8). If 

F Xm„<l, according to the same argument as has been used for the function Single-Query, we 
CC K 

obtain Equation (E.9). If deletion is performed in ordering column order, tuples to be deleted are 

accessed in random order. Thus, as many block accesses are incurred as the number of tuples deleted 

(Equation (RIO)). 

The Index Read/Write Cost is obtained as follows. In general, for each index, locating the index 
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entry corresponding to the deleted tuple requires accessing the index from the root with update 

mode; writing the modified index block needs one block access. When the tuples are deleted in 

physical order, however, special consideration must be given to the clustering index. First, since the 

entries in the clustering index are deleted in TID order, the "b" function is employed.   If no 

restriction column is clustering, the index entries to be selected are spread all over im   blocks; 

however, if a restriction column is clustering, those index entries are confined in F Xim   blocks, 
cc       cc 

and again a consideration similar to the one applied to function Single-Query has to be made. 

Mfactor (multiplying factor) is 1 if only writing cost of the modified blocks of the clustering index is 

needed (when tuples are deleted in clustering column order). Mfactor is 2 if both reading and 

writing costs of index blocks are considered (when tuples are deleted in TID order). When deletion 

is performed according to the ordering column order, the Index Read/Write Cost is obtained just as 

in the case of the clustering column order, except that the ordering column replaces the clustering 

column. 

•     function Insert(R,t,Ntuples-inscrtcd): Insertion Cost-cost for inserting Ntuples-inserted 

tuples in relation R. 

Insert = Data Read Cost + Data Write Cost + Index Read/Write Cost 

A. If the clustering column does not exist 

Data Read Cost = Ntuples-inserted 

Data Write Cost = Ntuples-inserted 

Index Read/Write Cost = Ntuples-insertedxS [IA(C,R,insertionmode)+l] 
C€{all columns having indexes} 

B. If the clustering column exists and has an index 

Data Read Cost = Ntuples-insertcdX[IA(clustering column,R,insertion mode)+l] 

Data Write Cost = Ntuples-inserted 
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Index Read/Write Cost = Ntuples-insertedX { 

2 [IA(C,R,update mode)+1] 
C£{all columns having indexes except for the clustering column} 

+ 1} 

C. If the clustering column exists, but does not have an index 

Data Read Cost = N tuples-insertedX|mR/2] 

Data Write Cost = Ntuples-inserted 

Index Read/Write Cost = Ntuples-insertedX 2 [IA(C,R,updatemode)-l-l] 
C€{all columns having indexes} 

For simplicity, we consider only the cases in which tuples are inserted in random order. (Unlike 

the deletion cost, the insertion cost includes the cost of reading in the data blocks.) The cases in 

which tuples are inserted in physical order or ordering column order can be analyzed using the same 

technique as has been used for the deletion cost. The insertion cost consists of three parts: Data 

Read Cost, Data Write Cost, and Index Read/Write Cost. The first is the cost of locating the places 

to insert new tuples. The second is that of writing modified data blocks. The third is that of 

updating the indexes accordingly. 

If there is no clustering column (Case A), tuples can be inserted at the end of the relation. Thus, 

reading and writing the block into which a tuple is to be inserted cause one block access, 

respectively. The location into which the index entry corresponding to the inserted tuple is to be 

placed can be found by accessing the index from the root with insertion mode using the value of the 

corresponding column of the inserted tuple as the key; this operation causes IA(C,R,insertion mode) 

block accesses. Function IA is invoked in insertion mode because the new index entry must have 

the largest TID value. Writing the modified index block causes one block access. 
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If the clustering column exists and has an index (Case B), the place into which the tuple is to be 

inserted can be found through the clustering index using insertion mode; this operation causes 

IA(clustering column,R,insertion mode) block accesses. One more block access is needed to read the 

data block. Writing the modified data block also causes one block access. The Index Read/Write 

Cost is obtained in a way similar to Case A, but an update mode must be used for function IA since 

index entries having the same key value must be ordered according to their TIDs. Excluded from 

the Index Read/Write Cost is the cost for reading the clustering index since it has already been 

included in the Data Write Cost; but, one block access must be added to account for the cost of 

writing the modified clustering index block. 

If the clustering column exists, but does not have an index (Case C), the relation has to be 

sequentially searched to locate the place for insertion, causing on the average [mR/2] block accesses. 

Writing the modified block requires one block access. As in Case B, in calculating the Index 

Read/Write Cost, update mode must be used for function IA. 

•      function Update(R,t,order,Ntuples-updated): Update Cost-cost for updating Ntuples- 

updated tuples of relation R according to the order specified in parameter "order". 

A. If the clustering column is updated 

Update = Dclcte(R,t,order,Ntuples-updated) + Insert(R,t,Ntuples-updatcd) 

B. If the clustering column is not updated 

Update = Data Write Cost + Index Read/Write Cost 

B.l. Updates are performed in physical order. 

(Data Write Cost) 

a. If no restriction column is clustering 

Data Write Cost = b(mR,pR,Ntuples-updated) 

b. If a restriction column is clustering 
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b.l. when F XmD>l 

Data Write Cost = b(FccXmR,pR,Ntuples-updated) 

b.2.whenF XmD<l 
CC K 

Data Write Cost = F^XbG/F^.F^Xn^Ntuples-updated/F^ 

(Index Read/Write Cost) 

Index Read/Write Cost = Ntuples-updatedX2X 

{2 [IA(C,R,updatemode)+l] 
CC{all updated columns having indexes} 

B.2. Updates are performed in ordering column order 

(Data Write Cost) 

Data Write Cost = Ntuples-updated 

(Index Read/Write Cost) 

a. If the ordering column does not have an index or is not updated 

Index Read/Write Cost = Ntuples-updatedX2X 

{2 [IA(C,R,updatemode)+l] 
C€{all updated columns having indexes} 

b. If the ordering column has an index and is updated 

Index Read/Write Cost = Ntuples-updatedX2X 

{E [IA(C,R,updatemode)+l] 
C€{all updated columns having indexes except for the ordering column} 

+ b^imorder col'Lorder c^Ntuples-updated) 

+ Ntuplcs-updatcdX[IA(ordcring column,R,updatc mode)+1] 

First, let us consider the case in which the clustering column is updated (Case A). In this case an 

update operation can be considered as a deletion followed by an insertion. Deletion is performed 

according to die order specified for update, but insertion follows a random order since the column is 
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updated to arbitrary values specified in the transaction. Although it is conceivable that the order 

could be preserved after the update (e.g., new value = old value + 10), we ignore this case since 

detecting this property requires understanding of the semantics of the transaction which is difficult 

to achieve at the optimizer level. 

Next, we consider the case in which the clustering column is not updated. The update cost 

consists of the Data Write Cost and the Index Read/Write Cost. The Data Write Cost is identical to 

that of the deletion cost. The Index Read/Write Cost consists of two parts: cost of deleting index 

entries for old values and the cost of inserting index entries for new values. In general, locating the 

index entry for the old value requires accessing the index from the root in update mode; finding the 

location where the new value is to be placed also requires accessing the index in update mode since 

index entries having the same key values are ordered according to their TIDs. Thus, we have a 

factor of 2. Writing the modified index block causes one block access. Index accessing cost for an 

ordering column needs special attention. Since tuples are accessed in ordering column order, the 

index must have already been read, and the "b" function should be used for the cost of writing the 

modified index blocks. The cost of inserting index entries for new values are identical to those of 

other indexes. 

One problem is worth note when updates are performed in the following situations: 

• The clustering column is updated while tuples are located by a relation scan. 

• The clustering column is updated vs hile tuples are located in clustering column order. 

• The ordering column is updated while tuples are located in ordering column order. 

In these situations the problem is that an updated tuple can be encountered more than once since 

the position of the tuple (or index entry) moves after its update [SCH 81] [STO 76]. Two solutions 

are suggested to avoid this anomaly. One adopted in [STO 76] is the deferred update. Here, updated 

tuples (or index entries) are stored in a temporary file and merged to the main file (or index) after 

update has been completed.   Another strategy suggested in [SCH 81] is to avoid the above three 
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situations by choosing an alternative access path in processing transactions. Although we included 

cost formulas for all cases for simplicity, if desired, the exceptional cases can always be avoided and 

the corresponding cost formulas ignored. 

E.6 Cost Formulas for Processing Transactions 

The costs for processing transactions are derived using the elementary cost formulas defined in 

Section E.5. Transactions are classified into the following eight types: 

SQ: Single-relation (one-variable) queries 

SD: Single-relation deletion transactions. 

SU: Single-relation update transactions. 

INS: Insertion transactions (single-relation transactions only). 

AQ: Single-relation queries having aggregate operators in their SELECT 
clauses, or GROUP BY constructs [CHA 76] or both. 

JQ: Two-relation (two-variable) queries having join predicates (i.e., two- 
relation joins) 

JU: Update transactions having join predicates. 

JD: '        Deletion transactions having join predicates. 

We introduce below the cost formulas for each type of transaction. For transactions containing 

join predicates, costs arc calculated for all combinations of partial-join algorithms. The combination 

is specified in the parenthesis: the first entry represents the partial-join algorithm for Rp and the 

second for R-.  The join direction is also specified, when relevant, by an arrow from the starting 

relation to the other relation. The factor "frcq" stands for the relative frequency of occurrence of a 

transaction. 

1.SQ 

Cost = freq * Single-Query(R,tjoin column not included) 

2.SD 
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Cost = freq * [Single-Query(R,tjoin column not included)+ 

Delete(R,t,TID orderjrestricted set|)] 

3. SU 

Cost = freq * [Single-Query(R,tjoin column not included)+ 

Update(R,t,TID orderjrestricted set|)] 

4. INS 

Cost = freq * Insert(R,t,random order, number of tuples inserted) 

5.AQ 

(Sort-Merge Method, -) 

Cost = freq * Sort-Merge(R.t) 

(Join Index Method, — ) 

Cost = freq * Join-Index(R.t) 

6.JQ 

(Sort-Merge Method, Sort-Merge Method) 

Costl = freq * [Sort-Merge(R1,t) + Sort-Merge(R2,t)] 

(Sort-Merge Method, Join Index Method) 

Cost2 = freq * [Sort-Merge(R1,t) + Join-Index(R2,t,Cf12)] 

(Join Index Method, Sort-Merge Method) 

Cost3 = freq * [Join-Index(R1,t,Cf21) + Sort-Merge(R2,t)] 

(Join Index Method, Join Index Method) 

a. Rx —► R2 (tuples in Rx are accessed first) 

Cost4 = freq*[Join-Indcx(Rrt,PCf12)+Join-Index(R2,t,Cf12)] 

b. R2 —► Rj (tuples in R2 are accessed first) 

Cost5 = freq*[Join-Index(R1,t,Cf21)+Join-Index(R2,t,PCf12)] 

(Inner/Outer-Loop Join Method, Inner/Outer-Loop Join Method) 

a.Rl->R2 
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Cost6 = freq*[Innef/Outer(R1,t,From)+Inner/Outer(R2,t,To)] 

b-R2^
Rl 

Cost7 = freq*[Inner/Outer(R1,t,To)+Inner/Outer(R2,t>From)] 

7.JU 
(Sort-Merge Method, Sort-Merge Method)   Not allowed 

(Sort-Merge Method, Join Index Method)    Not allowed 

(Join Index Method, Sort-Merge Method) 

Costl = freq * [Join-Index(Rrt,Cf21) + Sort-Merge(R2,t)+ 

Update(R1,t,ordering column=join column, |result set of RJ)] 

(Join Index Method, Join Index Method) 

a.R^R2 

Cost2 = freq * [Join-Index(R1,t,PCf21) + Join-Index(R2,t,Cf12)+ 

Update(R1,t,ordcring column = join columnjresult set of RJ)] 

bR2-Ri 
Cost3 = freq * [Join-Index(Rrt,Cf21) + Join-Index(R2,t,PCf12)+ 

Update(R1,t,ordering column=join column,|result set of RJ)] 

(Inncr/Outer-Loop Join Method, Inner/Outer-Loop Join Method) 

a. Rx ->R2 

Cost4 = freq * [Inner/Outer(Rrt,From) + Inner/Outer(R2,t,To) 

Update(Rrt,TID order, |result set of R^)] 

b. R2 -► Rx   Not allowed 

8.JD 

The cost formulas are identical to those of type JU transactions except that function 
Delete replaces function Update. 

Cost formulas for type SQ, SD, SU, and INS transactions are directly derived from the definitions 

of elementary cost formulas. 
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A type AQ transaction is essentially a partial-join between the GROUP BY column and the 

relation itself as far as the I/O access cost is concerned. Thus, if the sort-merge method(partial) is 

used, the relation is sorted according to the join column order so that tuples in the same group are 

clustered together. The sorted temporary relation is subsequently scanned to process the 

transaction. The join index method(partial) can also be used since, by scanning the join index, 

tuples in the same group can be retrieved consecutively. The inner/outer-loop join method(partial) 

is not applicable in processing a type AQ transaction. 

The cost of a type JQ transaction is composed of two partial-join costs: one for relation R,, the 

other for relation R2. Except for the cases in which the sort-merge method(partial) is included the 

cost differs depending on the direction of the join, i.e., depending on which relation's tuples are to 

be accessed first. Specifically, if the join index method(partial) is used for both relations, the partial 

coupling factor must be used for the relation to be accessed first; the coupling factor for the other. 

Also, if the inner/outer-loop join method is used, the direction must be specified explicitly as a 

parameter in function Inner/Outer. 

The cost of a type JU or JD transaction also consists of two partial-join costs and, in addition, 

update or deletion cost. Most of the join methods described in Section E.3 can be applied to a type 

JU or JD transaction as well, with some exceptions: the sort-merge method(partial) cannot be used 

for the relation to be updated (Rj); the inner/outer-loop join method is not allowed when the join is 

directed towards relation Rr 

E.7 Summary and Conclusion 

A comprehensive set of formulas for estimating transaction-processing costs in relational database 

systems has been developed. First, terminology has been defined in Section E.4 to provide a 

mechanism for understanding interaction among relations in multiple-file environment. Next, a set 

of elementary cost formulas has been developed for elementary access operations.  In doing that, 
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four types of ordcrings have been defined to characterize the order of accessing tuples. Finally, 

transactions have been classified into eight types, and the cost formulas for each type have been 

derived as composites of elementary cost formulas. 

The cost formulas have been fully implemented in the Physical Database Design Optimizer 

(PhyDDO)-an experimental system for developing various heuristics for the multiple-file physical 

database design described in Appendix section K. The system accepts the eight types of transactions 

described in Section E.6 and produces the optimal configuration of the physical database. 

The formulas developed in this chapter use a higher level abstraction compared with other cost 

models that incorporate more details of the storage structure [WIE 83] [SEN 69]. In particular, the 

cost model we used in this chapter uniformly account for the number of block accesses without 

differentiating sequential block accesses and random block accesses. This assumption is valid in 

DBMS's that do not explicitly exploit sequential storage allocation. 

Our model also uses a very simple assumption on the buffer strategy. (It has been assumed that a 

new block access is needed unless two data elements consecutively accessed reside in the same 

block.) Although the validity of this assumption has not been validated with actual databases in this 

paper, wc believe that it will be sufficient for most practical cases. Experiments based on simulation 

using the PhyDDO further supports that claim. 

The main contribution of this paper is to present a coherent and complete set of cost formulas for 

various types of transactions including queries, update, deletion, and insertion transactions. We 

believe that the techniques employed in this paper will provide a useful tool for future research on 

developing cost formulas for various database systems. 
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Appendix F. Index Selection in Relational 
Databases 

This paper has been submitted for publication. For convenience all references have 

been moved to the end of the thesis. 
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Index Selection in Relational Databases 

by 

Kyu-Young Whang 
Computer Systems Laboratory 

Stanford University 
Stanford, California 94305 

Abstract 

An index selection algorithm for relational databases is presented. The problem 
concerns finding an optimal set of indexes that minimizes the average transaction- 
processing cost. This cost is measured in terms of the number of I/O accesses. The 
algorithm presented employes a heuristic approach called DROP heuristic. In an 
extensive test performed to determine the optimality of the algorithm, the algorithm 
found optimal solutions in all cases. The time complexity of the algorithm shows a 
substantial improvement when compared with the approach of exhaustively searching 
through all possible alternatives. This algorithm is further extended to incorporate the 
clustering property (the relation is stored in a sorted order) and also is extended for 
application to multiple-file databases. 

F.1 Introduction 

We consider the problem of selecting a set of indexes that minimizes the transaction-processing 

cost in relational databases. The cost of a transaction is measured in terms of the number of I/O 

accesses. 

The index selection problem has been studied extensively by many researchers. A pioneering 

work based on a simple cost model appeared in[LUM 71]. A more detailed cost model 

incorporating index storage cost as well as retrieval and index maintenance cost was developed in 

[AND 77]. Some approaches [KIN 74], [STO 74] attempted to formalize the problem to obtain 

analytic results in some restricted cases. In a more theoretical approach Comer [COM 78] proved 

that a simplified version of the index selection problem is NP-complete.   Thus, the best known 

5This work was supported by the Defense Advanced Research Project Agency under the KBMS Project, Contract 
N39-82-C-0250. 

Author's current address: Computer Systems Liboratory ERL 416, Stanford University, Stanford, California 94305 
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algorithm to find an optimal solution would have an exponential time complexity. In an effort to 

find a more efficient algorithm, Schkolnick [SCH 75] discovered that, if the cost function satisfies a 

property called regularity, the complexity of the optimal index selection algorithm can be reduced to 

less than exponential. Hammer and Chan [HAM 76] took a somewhat different approach and 

developed a heuristic algorithm that drastically reduced the time complexity. However, the 

optimality of this algorithm has not been investigated. 

Although there has been considerable efforts on developing algorithms for index selection, most 

past research has concentrated on single-file cases. Furthermore, incorporation of the primary 

structure (the clustering property) of the file has remained to be solved. The purpose of this paper is 

to develop an index selection algorithm with a reasonable efficiency that can be extended to 

multiple-file environments as well as extended to incorporate the clustering property. 

The approach presented in this paper bears some resemblance to the one introduced by Hammer 

and Chan [HAM 76]. But, there is one major modification: the DROP heuristic [FEL 66] is 

employed instead of the ADD heuristic [KUE 63]. The DROP heuristic attempts to obtain an 

optimal solution by incrementally dropping indexes starting from a full index set. On the other 

hand, the ADD heuristic adds indexes incrementally starting from an initial configuration without 

any index to reach an optimal solution. 

Since we are pursuing a heuristic approach for index selection, the actual result is suboptimal. 

However, in an extensive test performed for validation, the algorithm found optimal solutions in all 

cases. (On the other hand, the ADD heuristic found nonoptimal solutions in several occasions.) 

We present first the index selection algorithm for single-file databases without the clustering 

property. This algorithm is tested for its validation with 24 randomly generated input situations, and 

the result compared with the optimal solutions generated by exhaustively searching through all 

possible index sets.   This algorithm is then extended to incorporate the clustering property. 
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Extension to multiple-file cases is subsequently considered. Section F.2 introduces major 

assumptions, while Section F.3 describes classes of transactions we consider and their cost functions. 

The index selection algorithm and its time complexity are presented in Section F.4. Discussed in 

Section F.5 is the result of the test performed for validation of the algorithm. The algorithm is 

extended to incorporate the clustering property in Section F.6 . Finally, discussed in Section F.7 is 

an extension of the algorithm for application to multiple-file databases. 

F.2 Assumptions 

We assume that the relation is stored in a secondary storage medium, which is divided into 

fixed-size units called blocks [WIE 83]. In processing a transaction the number of I/O accesses 

necessary to bring the blocks into the main memory depends on the specific buffer strategy. We 

assume, however, the following simple strategy: no block access will be necessary if the next tuple 

(or index entry) to be accessed resides in the same block as that of the current tuple (or index entry); 

otherwise, a new block access is necessary. We also assume that all TID (tuple identifier) 

manipulations can be performed in the main memory without any need for I/O accesses. 

We consider only conjunctive predicates consisting of simple equality predicates (e.g., A = 'a'). 

The sclectivities of each simple predicate is estimated as the inverse of the corresponding column 

cardinality. If a predicate is a conjunction of simple predicates, its selectivity is obtained by 

multiplying the selectivities of those simple predicates. More general predicates can be incorporated 

if a more elaborate scheme for estimating the selectivities [DEM 80] is employed. 

We assume that a B+-tree index [COM 79] can be defined for a column of a relation. The 

leaf-level of the index consists of (key, TID) pairs for every tuple in that relation and the leaf-level 

blocks are chained so that the index can be scanned without traversing the index tree. Entries 

having the same key value are ordered by TID. When index entries are inserted or deleted, we 

assume that splits or concatenations of index blocks are rather infrequent so that modifications are 
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mainly done on leaf-level blocks. Let us note that this model of storage structure is not essential for 

the validity of the algorithm to be presented, but is necessary for implementation. 

F.3 Transaction Model 

We consider four types of transactions: query, update, deletion, and insertion transactions. The 

classes of transactions for those types are shown in Figures F-l to F-4. 

SELECT <list of columns> 
FROM    R 
WHERE P 

Figure F-l:  General Class of Queries Considered. 

UPDATE R 
SET R.A = <new value.>, 
SET R.B = <new valueß>, 

WHERE  P 

Figure F-2:  General Class of Update Transactions Considered. 

DELETE R 
WHERE P 

Figure F-3:  General Class of Deletion Transactions Considered. 

INSERT INTO R: <list of column values> 

Figure F-4:  General Class of Insertion Transactions Considered. 

In Figures F-l to F-4 "P" stands for the restriction predicate that selects the relevant tuples. We 

call the columns appearing in P restriction columns. 
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Cost formulas for those transactions are now introduced in the form of functions. Each function 

will be followed by subsequent explanation on how it has been derived. In calculating the cost of a 

query we do not include the cost of writing the result since that cost is independent of the index set 

and, accordingly, irrelevant for optimization purposes. We also assume that, in resolving predicates, 

all the available indexes are utilized even if some index might increase the processing cost due to the 

access cost of the index itself. 

We define the following notation: 

C : A column. 

n : Number of tuples in the relation (cardinality). 

p : Blocking factor of the relation. 

L : Blocking factor of the index for column C. 

F : Selectivity of column C or of its index 

m : Number of blocks in the relation, which is equal to n/p. 

t : A transaction. 

restricted set : Set of tuples that satisfy all the restriction predicates. 

Equivalent to (II FC)X n. 
C€{all restriction columns} 

partially restricted set     : Set of tuples that satisfy the restriction predicates that can 

be resolved through indexes. 

Equivalent to (11 Fc)Xn. 
C€{all restriction columns having indexes} 

• function b(m,p,k): cost for accessing k randomly selected tuples in TID order. 

b(m,p,k)=m[l- <?)/$] (R1> 
= m[l - ((n-p)!(n-k)!)/((n-p-k)!n!)] 

= m[l - nk
=1(n-p-i + l)/(n-i+l)] 

when k<n-p, and 

b(m,p,k)=m whenk>n-p. 

The function is approximately linear on k when k«n and approaches p as k becomes large. 

Equation (F.l) is an exact formula derived by Yao [YAO-b 77]. Variations of this function and 

approximation formulas for faster evaluation are summarized in [WHA-a 82]. 
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function IA(C,modc): cost for accessing a B+-tree index from the root. 

A. mode = Query mode (F.2) 

IA = flogL nl + rFcXn/Lcl 

B. mode = Insertion mode 

IA = [log,  n] + 1 

C. mode = Update mode 

IA = riogL nl + [0.5XFcXn/Lcl 

The function IA has three modes depending on the purpose of accessing the index. In query 

mode all the index entries having the same key value are retrieved. The first term in Equation 

(F.2) is the height of the index tree, and the second the number of leaf-level index blocks accessed. 

In insertion mode an index entry corresponding to the inserted tuple is placed after the last entry 

having the same key value; thus, only one leaf-level block will be accessed. In update mode the 

index entries containing the old value have to be searched to find the one having the TID of the 

updated tuple; thus, on the average, about half of the index entries will be searched. 

• function Qucry(t): cost for processing a query 

Query = b(m,p,|partially restricted set|) + 21 IA(C,query mode) (F.3) 
C€{all restriction columns having indexes} 

Queries are processed as follows. Indexes of all restriction columns are accessed in query mode to 

obtain the sets of TIDs satisfying the corresponding simple restriction predicates. The intersection 

of these TID sets is formed subsequently to locate tuples in partially restricted set These tuples are 

retrieved and produced as output after the remaining restriction predicates are resolved. The first 

term in Equation (F.3) represents the cost of accessing data tuples; the second the cost of accessing 

indexes. 

• function Update(t): cost for processing an update transaction. 

Update = Query(t) (F.4) 
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+ b(m,p,|rcstricted set|) 

+ Irestricted set|X2x2 [IA(C,update mode)+l] 
c€{all updated columns having indexes} 

The update cost consists of three parts: the first term of Equation (F.4) represents the cost of 

reading in blocks containing the tuples to be deleted; the second term the cost of writing out 

modified blocks; and the third term the cost of updating corresponding indexes. The third term is 

again divided into two parts: the cost of deleting index entries for old values and that of inserting 

index entries for new values. Since these two parts have the same value, a factor of 2 is introduced. 

Let us note that, even for insertion of new index entries, update mode is specified for function IA 

since index entries having the same key value must be ordered according to their TIDs. 

• function Delete(t): cost for processing a deletion transaction. 

Delete = Query(t) 

+ b(m,p,[restricted set|) 

+ Irestricted set|X 2 [IA(C, update mode)+1] 
CG{all columns having indexes} 

The deletion cost is the same as the update cost except that the third term of the cost function 

represents the cost of deleting index entries for all existing indexes. 

• function Insert(t,NtupIes-inserted): cost for processing an insertion transaction. 

Insert = Ntuples-inserted 

X (1 + 1 + 2 [IA(C,insertion mode) + 1]) 
c€{all columns having indexes} 

Three parts contribute to the insertion cost: the cost of locating the place to insert a new tuple 

(one I/O access); the cost of writing the modified block (one I/O access); and the cost of modifying 

all existing indexes accordingly. In the third part function IA is called in insertion mode since the 

new index entry is always added at the end of the list of index entries having the same key value. 

- 149 



APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES 

F.4 Index Selection Algorithm (DROP heuristic) 

Input: 

• Usage information: A set of various query, update, insertion, and deletion transactions 
with their relative frequencies. 

• Data characteristics: Relation cardinality, blocking factor, selectivities and index 
blocking factors of all columns. 

Output: 

• The optimal (or suboptimal) index set 

Algorithm 1: 

1. Start with a full index set 

2. Try to drop one index at a time and, applying the cost evaluator, obtain the total 
transaction-processing cost to find the index that yields the maximum cost benefit when 
dropped. 

3. Drop that index. 

4. Repeat Steps 2 and 3 until there is no further reduction in the cost. 

5. Try to drop two indexes at a time and, applying the cost evaluator, obtain the total 
transaction-processing cost to find the index pair that yields the maximum cost benefit 
when dropped. 

6. Drop that pair. 

7. Repeat Steps 5 and 6 until there is no further reduction in the cost. 

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be 
predefined) indexes at a time. 

The variable k, the maximum number of indexes that arc dropped together at a time, must be 

supplied to the algorithm by the user. We believe, however, that k=2 suffices in most practical 

cases. In fact, in all the tests performed to validate the index selection algorithms, the maximum 

value of k actually used was 2. 
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The time complexity of the algorithm is 0(gXvk+1), where g is the number of transactions 

specified in the usage information, v the number of columns in the relation, and k the maximum 

number of columns considered together in the algorithm. The time complexity is estimated in terms 

of the number of calls to the cost evaluator which is the costliest operation in the design process. In 

the algorithm the cost evaluator is called for every k-combination of columns of the relation, and for 

every transaction in the usage information. This contributes the order of gXvk. The procedure is 

repeated until there is no further reduction in the cost. Since the number of repetitions is 

proportional to v, the overall time complexity is 0(gXv + ). 

F.5 Validation of the Algorithm 

An important task in developing heuristic algorithms is their validation. In this section the result 

of an extensive test performed to validate the index selection algorithm (DROP heuristic) will be 

presented. In particular, we try to measure the deviations of the heuristic solutions from the optimal 

ones for various input situations generated using different parameters. (These parameters were 

chosen from practically important ranges.) For a relation having many columns identifying the 

optimal solution itself is a difficult, often impossible, task. Therefore, in the tests, the number of 

columns in a relation is restricted to be ten. Optimal solutions are then obtained by exhaustively 

searching through all possible alternatives (210 combinations). 

The input situations are generated as follows: 

1. Two sets of the relation cardinality and column cardinalities are used: in Set 1 the 
relation cardinality is 1000; in Set 2 it is 100,000. The column cardinalities are randomly 
generated between 1 and the relation cardinality with a logarithmically uniform 
distribution. 

2. Two sets of the blocking factor and index blocking factors are used: 1) 10 and 100; 2) 
100 and 1000. The index blocking factors are assumed to be identical for all indexes. 

3. The usage information includes 30 transactions and their relative frequencies. Among 
them there arc 21 queries, 4 to 5 update transactions, 3 to 4 deletion transactions, and 1 
insertion transaction. Three sets of transactions are used. For each set, transactions are 
randomly generated as follows: for queries and deletion transactions 1 to 3 (numbers are 
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randomly selected) columns are randomly selected as restriction columns; for update 
transactions 1 to 3 columns are randomly selected as updated columns and as restriction 
columns. 

4. Two sets of relative frequencies are used. In Set 1 all transactions initially have identical 
frequencies. Later, the frequencies of deletion and insertion transactions are multiplied 
by an adjusting factor so as to keep the number of indexes in the result between 3 and 7. 
This adjustment is made to avoid extreme cases in which a full index set or an empty 
index set is the optimal solution. For Set 2 the relative frequencies of transactions are 
randomly generated between 100 and 500 with an interval of 50 between adjacent values. 

The scheme described above generates 24 different input situations, one of which is shown in 

Figure F-5. The test results for both Drop and Add heuristics are summarized in Table 1. In the 

first column of Table 1 the first digit of the input situation number represents the set of the 

relational cardinality, the second the set of the blocking factor and index blocking factors, the third 

the set of transactions, and the last the set of relative frequencies of transactions. The second column 

of the table shows the number of indexes present in the optimal solution. The CPU time shows the 

performance of the algorithms when run in a DEC-2060. The situations in which any deviation 

occurred are given percent deviations. Marked by "opt" are the situations in which an optimal 

solution was found. 

Ilnput Situation 2132! 
Schema 

Relations 
Relation R 

Relcard 100000 
Nblocks 10000 
Blkfac 10 

Column Cl 
Colcard 409 
Niblk 1000 
Iblkfac 100 

Column C2 
Colcard 1333 
Niblk 1000 
Iblkfac 100 

Column C3 
Colcard 180 
Niblk 1000 
Iblkfac 100 

Column C4 
Colcard 1 
Niblk 1000 
Iblkfac 100 

Column C5 
Colcard 1108 
Niblk 1000 
Iblkfac 100 

Column C6 
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Co1 card       678 
Nlblk 1000 
Iblkfac       100 

Column C7 
Colcard 175 
Niblk 1000 
Iblkfac 100 

Column C8 
Colcard 64 
Niblk 1000 
Iblkfac 100 

Column C9 
Colcard 194 
Niblk 1000 
Iblkfac 100 

Column CIO 
Colcard 328 
Niblk 1000 
Iblkfac 100 

Usage 
Transaction 1 

Type   SQ     FREQ   500 
Select R.C1 
From   R 
Where  R.C7 ="a"      AND 

R.C10="b" 

Transaction 2 
Type   SQ     FREQ   100 
Select R.C1 
From   R 
Where  R.C6 ="a"      AND 

R.C8 ="b"      AND 
R.C9 >"c" 

Transaction 3 
Type   SQ     FREQ   200 
Select R.C1 
From   R 
Where  R.C3 = "a"      AND 

R.C4 ="b"      AND 
R.C9 ="c" 

Transaction 4 
Type   SQ     FREQ   100 
Select R.C1 
From   R 
Where  R.C6 ="a" 

Transaction 5 
Type 
Select 

SQ FREQ 250 
R.C1 

From R 
Where R.C8 = "a" AND 

R.C2 = "b" 

Transaction 6 
Type SQ FREQ 50 
Select R.C1 
From R 
Where R.C5 = "a" AND 

R.C9 = "b" 

Transaction 7 
Type SQ FREQ 450 
Select R.C1 
From R 
Where R.C7 = "a" AND 

R.C10 = "b" 

Transaction 8 
Type 
Select 

SQ FREQ 100 
R.C1 

From R 
Where R.C8 = "a" 

Transaction 9 
Type SQ FREQ 250 
Select R.C1 
From R 
Where R.C3 = "a" AND 

R.C2 = "b" 

Transaction 10 
Type 
Select 

SQ FREQ 450 
R.C1 

From R 
Where R.C7 = "a" AND 
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R.C3 = "b" 

Transaction 11 
Type SQ FREQ 
Select R.C1 
Fron R 
Where R.C4 = "a" 

R.C7 = "b" 

Transaction 12 
Type SQ FREQ 
Select R.C1 
Fron R 
Where R.C10 = "a" 

Transaction 13 
Type SQ FREQ 
Select R.C1 
Fron R 
Where R.C8 = "a" 

R.C6 = "b" 

Transaction 14 
Type SQ FREQ 
Select R.C1 
From R 
Where R.C5 = "a" 

R.C2 = "b" 

Transaction 15 
Type SQ FREQ 
Select R.C1 
Fron R 
Where R.C4 = "a" 

500 

AND 

250 

150 

AND 

250 

AND 

100 

Transaction 16 
Type   SQ     FREQ   150 
Select R.C1 
From   R 
Where  R.C4 ="a"      AND 

R.C3 = "b" 

Transaction 17 
Type SQ FREQ 350 
Select R.C1 
From R 
Where R.C1 = "a" AND 

R.C4 = "b" AND 
R.C3 = " c " 

Transaction 18 
Type SQ FREQ 150 
Select R.C1 
Fron R 
Where R.C3 = "a" AND 

R.C9 = "b" 

Transaction 19 
Type 
Select 

SQ FREQ 150 
R.C1 

Fron R 
Where R.C5 = " a " 

Transaction 20 
Type SQ FREQ 300 
Select R.C1 
From R 
Where R.C8 = "a" 

Transaction 21 
Type SQ FREQ 400 
Select R.C1 
From R 
Where R.C4 =" a " AND 

R.C5 = "b" 

Transaction 22 
Type SU FREQ 200 
Update R 
Set R.C10 = "a" 
Where R.C9 = "f» 

Transaction 23 
Type SU FREQ 300 
Update R 
Set R.C1 = "a", 
Set R.C10 = "b", 
Set R.C8 = " c " 
Where R.C4 = "d" 

Transaction 24 
Type SU FREQ 300 
Update R 
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Set 
Set 
Where 

R.C3 
R.C6 
R.C8 
R.C5 

'•"a", 
."b" 
«"c" 
."d" 

AND 

Transaction 
Type 
Update 
Set 
Where 

25 
SU 
R 
R.C2 
R.C3 

FREQ 

.-a" 
•"e" 

260 

Transaction 

Delete 
Where 

26 
SD 
R 
R.C8 
R.C6 

FREQ 

=-d" 
="e" 

SO 

AND 

Transaction 
Type 
Delete 
Where 

27 
SD 
R 
R.C1 
R.C8 
R.C7 

FREQ 

• "d" 
>"e" 

150 

AND 
AND 

Transaction 
Type 
Delete 
Where 

28 
SD 
R 
R.C6 
R.C5 

FREQ 

>"c" 

250 

AND 

Transaction 
Type 
Delete 
Where 

29 
SD 
R 
R.C7 
R.C4 

FREQ 

.»f- 
-"g" 

200 

AND 

INDEX SELECTION IN RELATIONAL DATABASES 

Transaction 30 
Type   INS    FREQ   150 
Insert INTO   R: 

<"al","a2","a3"."a4","a5"."a6"."a7","a8","a9","al0"> 

Figure F-5:  An Example Input Situation. 

In all situations tested the DROP heuristic found optimal solutions. Although the test is by no 

means exhaustive, the result is a good indication that the DROP heuristic will perform well in many 

practical situations. In comparison, the ADD heuristic produced nonoptimal solutions in six cases; 

the maximum deviation encountered was 21.17%. One possible reason why the ADD heuristic does 

not perform well is the following. In the ADD heuristic, when the first index is added, the cost 

changes drastically causing an abrupt change in the design process. But, in the DROP heuristic, 

dropping indexes causes a smooth transition in the design process since dropping one index does not 

make a big change in the cost due to the presence of other indexes compensating for one another. 

As we can see in Table 1, an exhaustive search takes excessive computation time; in comparison, 

the DROP heuristic is far more efficient without significant loss of accuracy. Obviously, for larger 

input situations, the exhaustive-search method will become intolerably time-consuming. In these 

cases, heuristic algorithms such as the DROP heuristic may be the only ones applicable. 
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Table  1.     Accuracy and  Performance of the  Index Selection Algorithm. 

|Input |Number of | CPU timefsecond s) / Devi ation(%) 
|Situation Indexes 

Algorithm 1 | ADD Heuristic Ex. Searchj 

|  1111 |   7 |   2.3 1 opt |   2.0 |  0.21 1  36     | 
|  1112 1   6 |   2.2 | opt 1   2.1 opt 1   36     | 
|  1121 !   6 2.4 opt |   2.0 |  1.23 1   37     | 
j  1122 1   6 2.3 opt 1   2.1 |  1.17 1   37     | 
|  1131 6 |   2.5 opt 1   2.1 opt 1   39     | 
j  1132 |    7 2.5 opt 2.1 1.17 1   39     | 

|  1211 5 3.1 opt 1.7 opt 32     | 
j  1212 3 1.9 opt 1.6 opt 31     | 
|  1221 4 2.1 opt 1.7 opt 32     | 
|  1222 5 2.0 opt 1.7 opt 32     | 
|  1231 4 2.3 opt 1.7 opt 35     | 
|  1232 5 2.2 opt 1.7 opt 35     | 

|  2111 4 2.4 opt 2.1 16.71 39     | 
|  2112 5 2.5 opt 2.1 21.17 40     | 
|  2121 6 2.3 opt 2.0 opt 38     | 
|  2122 7 2.5 opt 2.0 opt 37     | 
|  2131 6 2.6 opt 2.2 opt 40     | 
|  2132 6 2.7 opt 2.2 opt 40     | 

|  2211 6 2.6 opt 2.0 opt 36     | 
j  2212 4 2.4 opt 1.9 opt 36     | 
|  2221 6   I 2.4 opt 1.9 opt 34     | 
|  2222 6   I 2.3 opt 1.9 opt 34     | 
|  2231 5   I 2.4  | opt 2.0 opt 38     | 
|  2232   | 5    | 2.4  | opt 2.0  | opt 38     | 

F.6 Index Selection when the Clustering Column Exists 

Incorporation of the clustering property to the index selection algorithm is straightforward. Two 

algorithms for this extension are presented below: 

Algorithm 2: 

1. For each possible clustering column in the relation perform index selection. 

2. Save the best configuration. 

Algorithm 3: 
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1. Perform index selection with the clustering column determined in Step 2 of the last 
iteration. (During the first iteration it is assumed that there is no clustering column.) 

2. Perform clustering design with the index set determined in Step 1.   The clustering 
property is assigned to each column in turn, and the best clustering column is selected. 

3. Steps 1 and 2 are iterated until the improvement in the cost through the loop is less than 
a predefined value (e.g., 1%). 

Algorithm 2 is a pseudo enumeration since index selection is repeated for every possible 

clustering column position. Naturally, Algorithm 2 has a higher time complexity compared with 

Algorithm 3, but has a better chance of finding an optimal solution. Both algorithms have been 

implemented and tested as a part of Physical Database Design Optimizer (PhyDDO)-an 

experimental system for developing various heuristics for the multiple-file physical database design 

K. In most cases tested they found optimal solutions. Let us note that the cost formula have to be 

modified in the presence of the clustering column. A complete set of cost formulas for multiple-file 

relational databases with the clustering property can be found in Appendix E. 

F.7 Index Selection for Multiple-File Databases 

Extension of the index selection algorithm for application to multiple-file databases is also 

straightforward. The extended algorithm (let us call it Algorithm 4) is almost identical to Algorithm 

1 except for the followings: 

1. The entire database is designed at the same time. It is done by treating all columns in the 
database uniformly as if they were in a single relation. 

2. When evaluating transactions involving more than one relation, the optimizer [SEL 79], 
[STO 76] has to be invoked to find the optimal sequence of access operations. 

Algorithm 4 has also been implemented and successfully tested as a part of the Physical Database 

Design Optimizer. 
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F.8 Summary and Conclusion 

Algorithms for the optimal index selection in relational databases have been presented. 

Algorithm 1, which employs the DROP heuristic, has been introduced for single-file databases and 

compared with the ADD heuristic. In an extensive test performed for its validation, the DROP 

heuristic found optimal solutions in all cases. In comparison, the ADD heuristic found nonoptimal 

solutions in several occasions. 

The index selection algorithm using the DROP heuristic has been extended to incorporate the 

clustering property (Algorithms 2 and 3) and also has been extended for application to multiple-file 

databases (Algorithm 4). 

Although index selection has long been a subject of intensive research, no successfully validated 

algorithm with good efficiency has been reported. We believe that our approach provides a useful 

and reliable algorithm for practical applications. 
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Appendix G. Relationships between Relations 

In this section, we demonstrate that the assumption that we made in Appendix A excluding 

M-to-N relationships from consideration for optimization is reasonable. 

Relations can have various relationships (not necessarily semantically meaningful ones) 

depending on the characteristics of the domains of the attributes that are related. For example, if we 

relate a key attribute (or set of attributes) in relation R1 and a nonkey attribute (or set of attributes) 

in relation R,, then R, and R, have a 1-to-N relationship with respect to these attributes considered. 

Relations R, and R, will have a 1-to-l relationship if attributes considered in both relations are key 

attributes, and an M-to-N relationship if both are nonkey attributes. 

In this section, we shall show that a relation scheme any of whose relation instance is a join of two 

relations which has an M-to-N relationship with respect to a set of attributes A has a multivalued 

dependency (MVD)[ULL 82]-assuming that the only predicate that relates these two relations is 

the one that represents the join on A. 

Intuitively, if a relation scheme R has an MVD A-»-»B (and accordingly A-»-»R-B), where A 

and B are sets of attributes in R, then in a specific relation instance r of R, given a specific value of 

A, the values of R-B are completely replicated for every distinct value of B. Because of this 

replication, sets of attributes B and R-B tend not to have a meaningful relationship, and thus it 

does not make much sense to have both 'sets of attributes together in a single relation. 

We believe, in accordance with the above argument, that joining two relations that have M-to-N 

relationships with respect to the set of attributes on which the join is performed is relatively 

infrequent. In Appendix A, on the basis of this argument, we excluded from consideration as 

prospects for optimization join operations on relations that bear an M-to-N relationship. 

We have the following theorems: 
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Theorem G.l: If a relation scheme R has an MVD A-»-»B, where A and B are sets of attributes 

of R, then every relation r for R is a natural join of projections of r on the relation schemes R: = A, 

R2 = AUB, R3 = AU(R- B), respectively, where Rr R2, and R3 possess the relationships shown in 

Figure G-l. 

A 

Rt     I       I 

/ \ 
/ \ 

• * 
AUB AU(R-B) 

R2     I I I I     R3 

Figure G-l:  Relation Schemes and Their Relationships. 

In this figure — * represents a 1-to-N relationship with respect to A. 

Proof: Rp R2, and R3 can be obtained by two consecutive lossless join decompositions, i.e., 

decomposition of R into AUB and AU(R-B) and decomposition of AUB into A and AUB. These 

two decompositions are lossless, since we have an MVD A-»->B [ULL 82]. Thus, the overall join 

decomposition of R into Rp R2, and R3 is also lossless. Therefore, for any relation r for R, r = 

JOIN3=inR(r). 

To prove that Rx and R2 has a 1-to-N relationship, we note that A in Rx is a key, since it is the 

only attribute (or set of attributes) in Ry However, A in R2 is generally not a key. So we have a 

1-to-N relationship from R1 to R2. 

When A in R2 is a key, we have a 1-to-l relationship between R: and R2, which can be considered 

as a special case of a 1-to-N relationship. Similarly, Rx and R3 have a 1-to-N relationship. Q.E.D. 

Theorem G.2: A relation scheme R has MVDs A->->B and C->-»D if any relation r for R is a 

- 160- 



APPENDIX G. RELATIONSHIPS BETWEEN RELATIONS 

natural join of some relations rp r2, and r3 for relation schemes Rp R2, and R3, respectively, where 

R-, R2, and R3 have the relationships shown in Figure G-2. 

AUC E 

h  I       II 
/      \ 

/ \ 
/ \ 

* * 
AB CD 

R,   I     I     I I*   I     I   R3 '2 

Figure G-2:  Relation Schemes and Their Relationships. 

In that figure — * represents a 1-to-N relationship with respect to A on the left side and one 

with respect to C on the right side. 

Proof: Consider tuples t and s with t[A] = s[A] in a relation r for R. Since r is a natural join of 

some relations rp r2, and r3, respectively, there must exist tuples ur u2 in r^, v1, v2 in r2; and wp w2 

in r3 such that 

t[A] = Ul[A] = vjA] and t[C] = u^C] = w^C] 

s[A] = u2[A] = v2[A] ands[C] = u2[C] = w2[C]. 

Since t[A] = s[A], we have uJA] = u2[A]. But since R± and R2 have a 1-to-N relationship from 

R, to R2, and they are connected through A, A must have unique values in rr Hence uL = u2 and 

accordingly uJC] = u2[C] = w2[C]. 

Therefore r will contain a tuple z where 

z[A] = vx[A] = t[A] = s[A] 

z[B] = vJB] = t[B] 

z[R-AUB] = w2[R-AUB] = s[R-AUB]. 

Thus R has an MVD A-»—»B. By a similar argument, R has C->->D. Q.E.D. 
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Corollary: Let relation schemes Rx and R2 have art M-to-N relationship with respect to a set of 

attributes A. The relation scheme R whose relation instances are natural joins on A of two relations 

rx for Rx and r2 for R2 has M VDs A-» -»(Rj - A) and A-* ->-(R2 - A). 

Proof: We can consider a two-relation join of rx and r2 as a three-relation join of rr r2, and an 

imaginary relation n^ U riAr2. Then the relation scheme R3 corresponding to this imaginary 

relation has 1-to-N relationships with Rx and R2, with respect to A, as shown in Figure G-3. 

A 

/       \ 
/ \ 

/ \ 
* * 

A  Rj-A A  R2-A 

Rx I  I III       I R 2 

Figure G-3:  Relation R3 has 1-to-N Relationships with Rx and R2. 

Thus relation scheme R has MVDs A-^-^-A) and A->-*(R2-B) from Theorem G.2. 

Q.E.D. 
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Appendix H. Equivalent Restriction 
Frequency of a Partial-Join 

In Appendix A, the equivalent restriction frequency of a partial-join using the join index method 

was defined as the ratio of the gain in access cost by having the restriction indexes in a partial-join to 

the gain in access cost that the same restriction indexes would yield in the joint restriction with the 

join index. We shall show in this section that this equivalent restriction frequency of a partial join 

using the join index method performed on relation R2 can be calculated, with one exceptional case, 

as Cf.2/F , where Cf12 is the coupling factor from relation Rx to relation R2 and Fa is the selectivity 

of the join columns of relation R2. 

By formulating the partial-join cost and the cost of the joint restriction in both cases in which the 

restriction index is used and in which the restriction index is not used (or does not exist), we shall 

show that the number of block accesses saved in a partial-join is the same as the number of block 

accesses saved in the joint restriction of the join index and the restriction index used in the partial- 

join multiplied by Cf12/Fa. 

We have three general cases: in Case 1 both the join index and the restriction index are 

nonclustering; in Case-2 the join index is nonclustering, while the restriction index is clustering; in 

case 3 the join index is clustering, while the restriction index is nonclustering. 

Case 1: both the join index and the restriction index are nonclustering 

a. When the restriction index is used 

Joint restriction cost = b(m,p,FaXFjXn) 

Partial-join cost = (Cf12/Fa) b(m,p,FaXFXn) 

In a joint restriction, the number of records selected is FaXFXn. We assume that these records 

are evenly spread and are accessed in TID order. Thus we get b(m,p,FaXF.Xn) block accesses. In a 
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partial-join, we are following the join index in the order of join column value, and FaXFjXn records 

are accessed for a distinct join column value. Since these records are spread over the entire file and 

are accessed in TID order, we get b(m,p,F XFXn) block accesses. This procedure is repeated for 

every distinct join column value selected by the coupling effect and the join selectivity (i.e., 

according to the coupling factor). The total number of distinct join column values are 1/Fa. 

Therefore, as the partial-join cost, we have (Cf12/Fa) b(m,p,FaXFiXn). 

b. When the restriction index is not used (or does not exist) 

Joint restriction cost = b(m,p,F Xn) 
a 

Partial-join cost = (Cf12/Fa) b(m,p,FaXn) 

An analysis applies that is the same as above except that the restriction index is not used. Thus, 

we have F Xn selected records instead of F XFXn. a a      l 

Case 2: the join index is nonclustering while the restriction index is clustering 

There are two cases to be considered separately: when F.Xm>l and when F.X < 1. 

1. WhenF.Xm>l 

a. When the restriction index is used 

Joint restriction cost = b(FiXm, p, F^FjXn) 

Partial-join cost = (Cf12/Fa) b(FXm, p, FaXFXn). 

This case is almost identical to Case 1, except that the restriction index is clustering and the range 

within which the selected records can be found is limited to F.Xm blocks instead of m (the number 

of blocks of the entire file). To use b function it is required that F.Xm>l. 

b. When the restriction index is not used (or does not exist) 

Joint restriction cost = b(m,p,F Xn) 
a 

Partial-join cost = (Cf12/Fa)b(m,p,FaXn) 
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This case is exactly the same as Case 1-b. 

2. WhenFjXnKl 

a. When the restriction index is used 

Joint restriction cost = FjX b(l/Fj, FjXn, FaXn) 

Partial-join cost = (Cf12/Fa)XFXb(l/F,F.Xn,FaXn). 

Since F.Xm < 1 and the restriction index is clustering, all records selected according to the 

restriction index will be confined in an area smaller than 1 block (let us call this a selected area). Let 

us assume that this selected area resides within a physical block (i.e., we ignore the case in which this 

selected area resides on the border of two blocks). If we assume that the file is divided into logical 

blocks of the same size as this selected area, the probability that this selected area will be hit by a 

joint restriction is 

(l/(l/F))b(l/F,FXn,FaXn). 

This is also the probability that the physical block containing the selected area will be hit (note that 

there are 1/F. logical blocks in the file). This is also the number of physical blocks to be hit by the 

joint restriction, since the physical block containing the selected area is the only one that can 

possibly be accessed. 

In a partial-join, the same analysis is valid for each distinct join column value, assuming that the 

same block must be fetched again if a repeated forward scan inside this block is to be performed. 

Thus the partial-join cost is the product of (Cf^/F ) and the joint restriction cost. 

b. When the restriction index is not used 

Joint restriction cost = b(m,p,FaXn) 

Partial-join cost = (Cf12/Fa) b(m,p,FaXn) 

This case is exactly the same as Case 1-b. 
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Case 3: the join index is clustering, while the restriction index is nonclustering 

1. When F Xm>l a      — 

a. When the restriction index is used 

Joint restriction cost = b(F Xm, p, FXFXn) 

Partial-join cost = (Cf„/F) b(F Xm, p, F XF.Xn). 

An analysis similar to Case 2-1-a applies, except that the range of the selected records is limited to 

FXm blocks instead of F.Xm. a l 

b. When the restriction index is not used 

Joint restriction cost = F Xm a 

Partial-join cost = (Cf12/Fa)XFaXm = Cf12Xm. 

Since the join index is clustering, the number of blocks accessed is proportional to the number of 

records selected. 

2. WhenFaXm<l 

a. When the restriction index is used 

Joint restriction cost = (1/(1/FJ) b(l/F , F Xn, FXn) 

Partial-join cost = b(m, 1/(F m), Cf,,Xb(l/F0> FXn, FXn)). 
a A.Z. a        3. 1 

The joint restriction cost can be obtained by a similar analysis used in Case 2-2-a, except that the 

roles of F and Fj are interchanged. 

In the partial-join, the entire file is divided into 1/F logical blocks, each of which contains F Xn 

records. According to the restriction index, FjXn records are selected; the number of logical blocks 

selected by this restriction is b(l/Fa, FaXn, FjXn). 

The coupling factor Cf12 determines how many distinct join column values are actually selected. 
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Since one logical block corresponds to one distinct join column value, the number of logical blocks 

selected according to the coupling factor and the selectivity of the restriction index is Cf^XbOVF^ 

FaXn,RXn). 

To calculate the number of physical blocks hit, let us assume that the entire file consists of m 

blocks, each of which contains l/(Fam) logical blocks. Since Cf^XbQ/F^ FaXn, FjXn) logical 

blocks are selected, the number of physical blocks that will be hit is b(m, l/(Fam), Cf^XKl/F^ 

FaXn,FiXn». 

b. When restriction index is not used (or does not exist) 

Joint restriction cost = 1 

Partial-join cost = b(m,l/(Fam),Cf12/Fa) 

This can be easily derived from Case 3-2-b by setting Fj to 1. 

We have seen, in all situations except Case 3-2, that the partial-join cost is equivalent to Cf12/Fa 

times the joint restriction cost. Accordingly, the cost saved by having the restriction index in a 

partial-join is Cf./F times the cost saved by having the restriction index in the joint restriction. 

Case 3-2 is the only case in which the equivalent restriction frequency of a partial-join using the 

join index method cannot be represented as Cf12/Fa. The reason is that, in a partial-join, the logical 

blocks are accessed in a serial order, and thus several logical blocks may cause only one block access. 

In the case of joint restriction, we need one block access in any case if at least one record is selected. 

The derivations of the formulas were introduced to show how we can formulate cost formulas 

with the b function, as well as to show that, in most cases, equivalent restriction frequency has a 

simple form, Cf12/F . 

While the detailed form of cost formulas depend on the specific cost models, we believe that the 

same principle we used in the derivation can be easily applied to any given model. 
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Appendix I. Computational Errors 

1.1 Comparison of Computational Errors 

In this appendix we develop the prediction of the computational errors which occur in the 

estimation of block accesses discussed in Appendix C. These computational errors occur due to the 

limited precision of the computing system evaluating the formula. 

For convenience, we reintroduce two equations from Appendix C. Equation (1.1) is the 

approximation formula developed, and Equation (1.3) is the representation of Yao's exact formula 

using the Gamma function. 

bwl(m,p,k)/m = [1 - (1 - l/m)k] (1.1) 

+ [l/m2p X k(k-l)/2 X (l-l/m)k_1] 

+ [1.5/m3p4 X k(k-l)(2k-l)/6 X (l-l/m)^1] 

when k<n-p, and 

bwl(m,p,k)/m = 1 whenk>n-p (1.2) 

b(m,p,k) = m[l-exp(LGAM(n-p + l)+LGAM(n-k + l) (1.3) 

- LG AM(n-p-k +1) - LG AM(n +1))]. 

Theorem 1.1: Calculation of Eq. (1.3) to d digits of precision with a possible error of ±1 in the 

least significant digit (LSD) requires at least log10(mn log(n)) + d valid digits in the computing 

system with a possible error of ±1 in the LSD. 

Proof: We shall use a pseudo equality symbol = throughout this proof and the proof of Theorem 

1.2, ignoring the deviation from equality whenever it neither affects the logical flow of the proof nor 

changes the numerical result significantly. 

By Stirling's approximation [KNU-a 73], 

r(n+l)=V27rn(n/e)n,and 

ln(r(n+1)) = ln( V27T)+0.5 ln(n)+n(ln(n) -1) 

= n ln(n), 

since we arc considering relatively large n's. 
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From Eq. (1.3), 

(1-4) 

b(m,p,k)=l-exp[LGAM(n-p+l)+LGAM(n-k+l)-LGAM(n-p-k+l)-LGAM(n+l)] 

= -LG AM(n-p+1)-LG AM(n-k+1)+LG AM(n-p-k+1)+LG AM(n+1). 

Let us consider the case in which k=1. At this k value, all four terms in Eq. (1.4) are close to n ln(n), 

the result is the smallest possible, and we shall get the maximum error. If we assume that evaluation 

of Eq. (1.4) causes the error of ±1 in the LSD, then the error of the result will be 

10_x X n ln(n), 

where x is the number of significant digits. 

The exact value of the result of Eq. (1.4) must be 1/m, since only one block will be hit. Therefore, 

the relative error caused by the computation with x significant digits will be 

(1(TX X n ln(n))/(l/m)=(mn ln(n)) X 10_x. (1-5) 

If we require this to have an error of less than 10_d, so that we have d digits of precision in the result 

with a possible error of ±1 in the LSD, Eq. (1.5) must be less than 10_d. Therefore, 

x > log10(mn ln(n)) + d. Q.E.D. 

Theorem 1.2: x > (log10 m)+d+log10(d)+1 valid digits with a possible error of ±1 in the LSD 

are sufficient in the calculation of Eq. (1.1) to d digits of precision. 

Proof: The major cause of the error is in the calculation of 1-1/m as m gets larger, since it 

requires as many digits as log10 m. We shall use the equality (1- l/m)m = e_1 throughout, assuming 

that m is sufficiently large. For convenience let us consider only the first term of Eq. (1.1), since the 

other terms behave similarly and their absolute values are always less than (1-1/m) . 

Let us divide the values of k into 3 ranges: k < 0.1m, k > ln(10)XdXm, and 0.1m < k < 

ln(10)XdXm. 

(1) k < 0.1m 

From a Taylor expansion we have 
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(l-l/m)k=l-k/m+k(k-T)/2 X (1/m)2... i 1-k/m, and thus 

l-(l-l/m)k = k/m. 

In the calculation of (1- 1/m) we have an error of 10_x, so that, as a result of computation, we get 

(l-l/m+Hrx)k= l-k(l/m- 10"x). 

(For convenience let us consider only a positive error.  Negative errors can be treated similarly.) 

Accordingly, the error of the overall calculation will be 

(k(l/m- 10~x)-k/m)/(k/m)=-10~x Xm. 

Thus, we get a precision of d digits in the result if and only if 

10"xXm <NTd,or 

x>0og10m)+d. 

(2)k>ln(10)XdXm 

In this case 0 < (1 - l/m)k < 10 ~d. Hence, 

1 > l-(l-l/m)k> l-l(Td>0.9, 

assuming d > 1. However, actual computation may yield 

l-(l-l/m + 10"x)k. 

Since 

x>(log10m)+d+l, 

we have 

10~x < (l/m)10~(d+1). 

Since 

(l-l/m+10_(d+1)/m)k 

= (l-(l-10_(d+1))/m)k 

<(1_(l_10-(d+i))/m)NlO)XdXm 

= 10-(l-lO-(d+1))Xd^10-d 

assuming d>l, the relative error, ((l-l/m)k - (l-l/m + 10_x)k)/0.9, cannot be greater than 

(1/0.9X10 _d)=: 10 _d. Thus we have a precision of d digits in the result 

(3)0.1m<k<ln(10)XdXm 
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We have 

ln[((l - l/m)+10_x)/(l- l/m)k] 

= k(ln(l-l/m+l(Tx)-ln(l-l/m)) 

= k((l-l/m+l(Tx)-(l-l/m)) 

= k X 10"x. 

Accordingly, 

((1 - 1/m+10~x)k- (1 - 1/m) V(l - l/m)k 

= exp(kX10_x) - 1. 

a) m<k<(ln 10)XdXm 

The relative error will be 

((1 - 1/m + l(Tx)k- (1 - l/m)k)/(l - (1 - l/m)k) 

<((l-l/m + 10-x)k-(l-l/m)k))/(l-l/m)k 

= exp(kX10~x) - 1 

< exp((k/md)X10~(d+1)) - 1 

< exp(ln(10)XKT(d+1)) - 1 

<ln(10)X10_(d+1> 

= 0.23X10_d. 

Thus, we have a precision of d digits. 

b)0.1m<k<m 

We have 

(l-l/m)k = l-k/m<0.9. 

Hence, the relative error will be 

((1 - 1/m +10 - x)k - (1 - l/m)k)/(l - (1 - l/m)k) 

<(l/0.1)((l-l/m+10-x)k-(l-l/m)k) 

< 10((1 - 1/m+10 - x)k - (1 - l/m)k)/(l - l/m)k 

= 10(exp(kX10~x) - 1) 

< 10(exp((k/m)X10"(d+1)) - 1) 

< 10((k/m)X10_(d+1)) 
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< 10Xl(T(d+1) 

= l(Td. 

This shows that we have a precision of d digits. Q.E.D. 

Corollary: Eq. (1.1) requires at least x > (log10 m)+d valid digits to get d digits of precision in the 

result 

Proof: This follows from the case (1) of Theorem 1.2. Q.E.D. 

Applying Theorem 1.2 and its corollary, the actual requirement will be 

(log10m)+d < x < (log10m)+d+log10(d)+l. 

Example 1: Let us calculate the number of valid digits required by the evaluation of Eq. (1.1) and 

Eq. (1.3), respectively, when m = 106, p = 10, n = 107, and we need a precision of 2 digits in the result. 

(a) For Eq. (LI), 

log10(106)+2 + log10(2)+1 = 9.3, 

log10(106)+2 = 8,and 

8 < x < 9.3. 

(b)ForEq.(I.3), 

x = log10(106 X 107 X ln(107)) + 2 

= 16.3. 

We note that Eq. (1.3) requires roughly twice as many valid digits as does Eq. (1.1). D 

In the exhaustive calculation we made over the range specified in Appendix C, the maximum 

error (0.2%) occurred at m = 106, p = l, and k « m (i.e. k~l), which actually corresponds to the 

lower bound given in the corollary. 

Example 2: The error of 0.2% is equivalent to a precision of 2 digits according to our definition, 

- 172- 



APPENDIX I. COMPUTATIONAL ERRORS 

since 0.998 compared with 1.0 clearly has an error exceeding 1 in the third digit, and the first and 

second digits are the only valid digits with possible error of ±1 in the LSD. Thus, the number of 

valid digits x of the computer required by Eq. (1.1)) when m=106 will be 

8 < x < 9.3 

The DECSYSTEM-20 has 2~   of resolution, approximately corresponding to 8 valid digits, which 

confirms our result D 

1.2 Computational Error in an Extended Range 

The maximum computational error when the number of blocks m is extended to 107 is 4.3%; it 

occurs at k = 1 for all values of p. • 

We assumed throughout that m has only integer values. However, computer calculation 

performed over all combinations of the following range shows that the maximum deviation of Eq. 

(1.1) from the exact formula is 3.7%, even for the real values of m. 

• 1.1 < p < 3.9 with increments of 0.1, 

• 1 < p < 10 where p is an integer, 

• 1.1 < m < 3.9 with increments of 0.1. 

The general shape of the deviation can be found in Appendix C. 
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Appendix J. Supplementary Discussions on 
Design Algorithms 

This appendix consists of six sections. In Section J.l more details are presented on the 

development of physical design algorithms that have not been fully discussed in Chapter 4. In 

Section J.2 are discussed more details on the strategy of handling virtual columns (multiattribute 

columns). In Section J.3 more complete formulas for the time complexities of the Index Selection 

Step and the Exhaustive-Search Method are derived. The two situations that produced deviations in 

the tests are analyzed in Section J.4. 

J.1 More Details on Design Algorithms 

In this section we discuss some details on the development of the design algorithms that have not 

fully explained in Chapter 4. Specifically, we have the following four fine details to discuss: 

1. An index together with the clustering property 

In the Clustering Design Step (or NS Clustering Design Step), an index is assigned together with the 

clustering property if the column has not been assigned one in the Index Selection Step (or NS 

Index Selection Step). If the column has an index already, only the clustering property is assigned. 

This strategy has been used on the basis of the observation that in almost none of optimal solutions a 

column possesses the clustering property without an index (except for degenerate cases in which 

multiple optimal solutions exist). This observation confirms the belief that the clustering property is 

best utilized when it is coupled with an index. Furthermore, although there is nothing wrong in 

having a clustering column without an index in the access configuration as far as it is one of the 

optimal solutions, having such a column during the design process could hinder smooth transitions 

of access configurations resulting in a nonoptimal solution. These considerations support the 

strategy of assigning an index together any time the clustering property is assigned to a column. 
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2. Index selection before clustering design 

The Index Selection Step must precede the Clustering Design Step in the iteration loop. In the 

preliminary algorithm introduced in[WHA-a 81], clustering design is performed before index 

selection. However, doing so posed the following problem. If the Index Selection Step precedes the 

Clustering Design Step, clustering design is performed with a full index set in the first iteration. As a 

result the total index update cost, which constitutes a major portion of the total update cost, stays the 

same whichever column acquires the clustering property. Thus, in determining the optimal 

clustering column, there is a possibility that the clustering property is assigned to a column that is 

heavily updated. The problem is that, in the Index Selection Step performed next, the column 

endowed with the clustering property (which has a heavy update cost) has a tendency to release 

neither the clustering property nor the index even though an index is not worth its update cost 

because an index coupled with the clustering property yields much more benefit than the index 

alone so that the index may look like worth of its own update cost. The result would be a wrong 

index and a wrong clustering column. Furthermore, this mistake won't be corrected in future 

iterations. 

We can avoid this anomaly by swapping the order of the two design steps. We start with index 

selection assuming no clustering column initially. Since no indexes are coupled with the clustering 

property, all the indexes can be compared on a fair basis. The indexes that do not compensate for 

their own update cost will subsequently be dropped. The clustering property is assigned in the next 

step when all insignificant indexes have been dropped. Note that although we swapped the two 

steps, the same problem can arise since the Index Selection Step follows the Clustering Design Step 

of the previous iteration; but it would be much less hazardous than in the first iteration. 

3. All join methods allowed in the first iteration 
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In Phase 1 of Algorithm 1 and 2, during the first iteration, we allow all join methods for update 

transactions. In Section D.3.2 it was shown that, in Phase 1, only the join index method can be used 

for update transactions having join predicates. This restriction led to an anomaly that the join 

indexes used by update transactions must not be removed in Phase 1. We greatly alleviated this 

anomaly by introducing the Perturbation Step. However, further improvement can be achieved by 

releasing the constraint during the first iteration so that other join methods may be used as well, and 

the join indexes for update transactions can be dropped. Note that this strategy is not logically 

correct but is only a temporary measure to make a smooth flow of design process. The constraint is 

imposed again from the second iteration. 

4. Calculation of the selectivity 

The selectivity of a range predicate (that has an operator such as <,< = ,>,> = ) is arbitrarily set to 

1/4. A more elaborate method for estimating the selectivity of a range predicate would be to 

interpolate based on the highest and the lowest values in the column and the value specified in the 

predicate. However, specific methods of estimating the selectivity of a range predicate does not 

affect the general validity of the design algorithms. Therefore, in this dissertation, a most simplistic 

method is employed. 

J.2 Virtual Columns 

In this section we discuss the strategy of handling virtual columns. Virtual columns are necessary 

to support indexes defined on two or more attributes (multiattribute indexes). The general 

treatment of multiattribute indexes adds another level of complexity to the already complex index 

selection problem. (A very simplified version of the index selection problem has been proved to be 

NP-complete by Comer [COM 78].) Moreover, in the context of our model, multiattribute indexes 

are not necessary for resolving restriction predicates. Restriction predicates referring to more than 

one attribute can always be resolved by forming the intersection of TID sets from the indexes 
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involved to the same effect of a multiattribute index. (Let us remember that we have assumed that 

TID manipulation causes negligible I/O accesses.) 

When a join predicate that refers to more than one attribute is resolved, however, individual 

single-attribute indexes cannot be used as a substitute for a multiattribute index: join indexes must 

be scanned according to the order of join column values, but this order cannot be achieved by 

simply intersecting the single-attribute indexes that are defined for the join attributes. Thus, in 

principle, we need to consider a multiattribute index for every set of join attributes that appear 

together in a join predicate. Each set of join attributes are subsequently mapped into a virtual 

column. 

Sets of attributes constituting virtual columns are specified in the schema information. Virtual 

columns are defined only for the sets of attributes that are semantically relevant as join attributes. 

The concept of connections and connecting attributes is borrowed from the Structural Model [WIE 

79] for this purpose. The structural model defines the connection as the representation of a 

semantically meaningful relationship between two relations, and connecting attributes as the 

attributes establishing the relationship that corresponds to a connection on the basis of equality of 

their values. We define semantically relevant joins as those associated with connections. 

Accordingly, the connecting attributes of a connection are mapped into a virtual column. Let us 

note that, in evaluating the joins that are not semantically relevant but have more than one join 

attributes, the join index method cannot be used since virtual columns and accordingly 

multiattribute indexes are not provided for their join attributes. 

In Figure J-l below, is illustrated a simple database schema with connections and virtual columns 

as well as ordinary single-attribute columns. The symbol "*" in a connection indicates N-side 

relation in the 1-to-N relationship that the connection represents. 

Another purpose of defining a virtual column is to provide a correct selectivity of an equality 
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| SHIPID | SHIPNAME | SHIPS 

VOYAGES 

| SHIPID | VOYAGENUMBER | CHARTERER 

\ / 

VOYAGES 

\/ 
I 
I * 
A 

/ \ 

|   SHIPID   |   VOYAGENUMBER   |   STOPNUMBER   |        STOPS 

Columns: 

In Relation SHIPS : SHIPID, SHIPNAME 
In Relation VOYAGES : SHIPID, VOYAGENUMBER, CHARTERER 
In Relation STOPS   : SHIPID, VOYAGENUMBER, STOPNUMBER 

Virtual Columns: 

In Relation VOYAGES : SHIPID-VOYAGENUMBER 
In Relation STOPS   : SHIPID-VOYAGENUMBER 

Figure J-l:  Relations, Connections, Columns, and Virtual Columns. 

predicate referring to more than one column.   If the predicate refers to only one column, the 

selectivity is estimated as the inverse of the column cardinality (the number of distinct values 

existing in a column).  If the predicate refers to more than one column, i.e., if the predicate is a 

conjunction of more than one simple equality predicate that refers to a single column, the selectivity 

is often estimated as the product of inverses of column cardinalities of the columns referred in the 

predicate (let us call the set of these columns the column set). Such an estimation is valid, however, 

only under the assumption that there is no correlation among the columns [SCH 75].    This 

assumption implies that every possible combination of distinct values from individual columns in 

the column set must exist in the database. This assumption is obviously impractical in most cases. 
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When a restriction predicate is considered, however, we extend the assumption as follows: For each 

nonexistent value combination, a hypothetical tuple is created, and it is assumed that the predicates 

applied to the column set select each tuple of distinct value (including hypothetical tuples) with 

equal probability. If the predicate selects hypothetical tuples, the response will be null. This 

assumption is further elaborated in Example A.l. 

Example A.l: Let us assume that we have the following data for a column set (A, B, C). The data 

represent the projection of a relation on the column set Duplicates are removed so that unique value 

combinations are represented by one tuple in the projection. 

Column Set ABC 

3i bl u1 
Data a1 b2 Cj 

a2 bx c2 

h. b2 c2 

If hypothetical tuples are included, the data for the column set become 

Column Set ABC 
al bl ci 
a b, c2    hypothetical 

Data \ b2 cx 
b, c2    hypothetical 
b, cx     hypothetical 
bi c2 
b, c,     hypothetical 

al 

h bl C2 
a2 b2 
a2 b2 c2 

Then, the assumption states that the predicate of the form (A = 'a') AND (B = 'b') AND (C = 

'c') refers to each (distinct) tuple in the data including hypothetical tuples with equal probability. 

Thus, the probability that the value combination <a2> b2, cx> is to be accessed is 1/8. D 

The above assumption is an extension of the uniformity assumption applied to individual 

columns; the uniformity assumption asserts that the equality predicate referring to a column selects 

each distinct value in that column with equal probability and that there exist an equal number of 
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tuples for each distinct value. Under this extended uniformity assumption the joint selectivity of a 

column set becomes the product of the selectivities of the component columns. (For simplicity, we 

define the selectivity of the column as the selectivity of an equality predicate for a column.) 

Although the extended uniformity assumption is useful for estimating the joint selectivity of a 

restriction predicate, it cannot easily be applied when a join predicate is concerned. When a join 

operation is performed, values of join attributes from each relation are compared for a possible 

match. Hence, the join predicate is only tested with the join attribute values that actually exist in the 

database; that is, hypothetical tuples are never selected. For this reason, the probability of an 

existing tuple to be selected is far greater than what would result from the extended uniformity 

assumption. This phenomenon is further illustrated in Example A.2. 

Example A.2: Consider the following relation: 

Attributes: EMP-NAME CHILD-NAME AGE 
John Meadows Jack 3 
John Meadows Alby 5 

Data     John Meadows Sara 7 
Charlie Fu Randy 5 
Charlie Fu David 10 

The column cardinality for EMP-NAME is 2; that for CHILD-NAME is 5. Thus, the selectivity 

of the column EMP-NAME is 1/2; that for CHILD-NAME is 1/5. If EMP-NAME and CHILD- 

NAME are referred together in a restriction predicate, the joint selectivity of the two columns is 

1/10. This is so because it is conceivable that a user specifies a predicate such as (EMP-NAME = 

'John Meadows') AND (CHILD-NAME = 'Randy'). If the two columns are specified together in a 

join operation (i.e., EMP-NAME and CHILD-NAME are the join attributes), however, a predicate 

such as (EMP-NAME = 'John Meadows') AND (CHILD-NAME = 'Randy') are never tested since 

all the values of the columns are supplied from within the database. Thus, the joint selectivity of the 

two columns is 1/5, the inverse of the cardinality of the virtual column (EMP-NAME, CHILD- 

NAME). D 
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So far, it has been shown that joint selectivities are different according to the type of predicates we 

consider. The difference can be reflected in the design process by specifying a selectivity for each 

virtual column. Thus, the virtual column and its selectivity will be used when a multiattribute join is 

performed, whereas selectivities of individual columns will be used when a multiattribute restriction 

is resolved. 

During the design process a virtual column is considered as yet another independent column 

without any difference from an ordinary column. There is one exception, however, when the 

clustering property is assigned to a virtual column. When a relation is sorted according to the order 

of a multiattribute column, it is also sorted according to the order of its first component column. 

Thus, if a virtual column is assigned the clustering property, so should its first component column 

be, but not vice versa. 

J.3 More Details on Time Complexities 

In this section we provide a more detailed derivation of the time complexity of the Index 

Selection Step in Algorithm 1 and Algorithm 2. The time complexity of NS Index Selection Step in 

Algorithm 3 can be derived similarly. The time complexity of the Exhaustive-Search Algorithm is 

also presented. 

1. Index Selection Step 

The following notation will be used throughout this section: 

v • Number of columns in a relation (number of indexes in a full index set) 

v : Number of indexes remaining when the index selection substcp with k=l 
(corresponding to substeps 2, 3, and 4 of the Index Selection Step in Section 
D.5.1) has been completed, k is the maximum number of indexes that have been 
considered together at a time. 

v.: Number of indexes remaining when the index selection substep with k = i has 
been completed. 
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s: Average number of relations referred to in a transaction, 

t: Number of transactions in the input usage information, 

c: Total number of columns in the database 

Cj: Number of columns in relation i. 

Let us first consider the time complexity of the index selection substep with k = 1. During the first 

iteration in the substep, the algorithm tries to drop one index at a time, actually dropping the one 

that yields the maximum benefit. Thus (s/r)XtXvQ calls to the cost evaluator (EVALCOST-1) are 

necessary. The factor (s/r)Xt takes into account that, on the average, (s/r)Xt transactions refers the 

relation being considered.  During the second iteration only (s/r)XtX(vQ-l) calls are necessary 

since an index has been already dropped in the first iteration. As a result, for the entire substep with 

k = 1, the number of calls to the cost estimator will be 

(s/r)XtX(v0 + (v0-1) + (v0-2) + ... + Vl). (J.l) 

Now let us consider the substep with k = 2. This substep starts with \1 indexes that survived the 

substep with k = 1. During the first iteration the algorithm tries to drop every possible pair among v, 

indexes; hence, the cost evaluator will be called (s/r)t(v1(v1~l)/2) times. For the second iteration, 

it will be called (s/r)t(v1-2)(v1-3)/2 times. Thus, for the entire substep with k = 2, the number of 

calls to the cost evaluator will be 

0.5 (s/r)t(Vl(Vl -1) + (Vl - 2)(Vl - 3) + (vx - 4)(vx - 5) + ... + v2(v2 -1)). (J.2) 

The complexities for higher values of k can be obtained analogously. 

As we sec in Equations ((J.l)) and ((J.2)), the time complexities have a dynamic nature in that 

they depend on the number of indexes remaining after each substep. In general, however, the 

complexity of the first substep is 0((t/r)vQ
2) and that of the second substep is 0((t/r)vQ

3) since vx 

will be roughly proportional to vQ. Analogously, complexities for higher values of k, in general, 

would be 0((t/r)vQ
k+1). Since a higher order substep has a higher order complexity, the 

complexities of lower order steps become negligible as vQ gets larger. Thus, the overall complexity of 

the Index Selection Step is O((t/r)v0
k+1). 
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2. Exhaustive-Search Algorithm - 

The time complexity of searching all the possible alternative access configuration for the entire 

database is obtained as 

tX(cx+l)(c2+l)...(cf+1)X2C. (J-3) 

The factor 2C accounts for the number of possible index configuration since every column in the 

database can either have an index or not. The factor (a + 1) represents the number of possible 

clustering positions in relation i (including the case with no clustering column). The number of 

possible index configuration multiplied by the number of clustering positions in every relation will 

constitute the total number of access configurations for the entire database. For each access 

configuration, the cost evaluator (EVALCOST-2) will be called by the number of transactions, t, in 

the usage information. Thus, Equation (J.3) gives the total number of calls to the cost evaluator for 

searching through all the alternative access configurations. 

J.4 Analysis of Deviations 

In most situations that are tested in Section K, all three algorithms produced optimal solutions. In 

some cases, however, some deviations occurred from the optimal solutions: Algorithm 1 produced a 

deviation of 3.1% in Situation 50; Algorithm 1 and Algorithm 3 produced 6.6% in Situation 42. In 

this section these situations are investigated and the deviation analyzed. 

The following notation will be used throughout this section: 

1: A clustering column with an index 
0: A column with an index only 
X: A column with neither an index nor the clustering property 
*: A column with the clustering property but no index 

1. Algorithm 1 in Situation 50 

Figure J-2 shows access configurations for relations R, and R, at each design step of Algorithms 
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1, 2, and 3. Access configurations of the other relations are not shown since they are identical to the 

optimal solution. Only first two iterations are shown since there are no more improvements from 

the third. 

Relation   | R2 ||       R5 

Column     |Cl C2 C3 C4|C1 C2 C3 C4|C1 C2 C3 C4||C1 C2|C1 C2|C1 C2 

Design Step |   Alg.l | Alg.2  | Alg.3  ||Alg.1|Alg.2|Alg.3 

Index Sei.  |0 0 0 0 | N/A    |0 0  0 0 ||0 X |N/A  |X  X 
Cluster Des.|0 0 0 1 10 0  0 1 10 0  0 1 | 11 X 11  X | X  1 
Perturbation|X 0 0 1 |X 0 0 1 | N/A    jjl X jl X j N/A 
Index Sei.  |X 0 0 1 | N/A    |0 0  0 1 jjl X |N/A  |X  X 
Cluster Des.|X 0 0 1 |X 0  0 1 |0 0  0 1 ||1 X |X  1 jx  1 
PerturbationIX 0 0 1 10 0 0 1 I N/A    111 X IX  1 IN/A 

Figure J-2:   Access Configurations for R2 and R$ at Each Design Step. 

In this situation Algorithm 2 and Algorithm 3 both found the optimal solution. Algorithm 1, 

however, resulted in a slight deviation from the optimal solution. Compared with the optimal 

solution, the access configuration that Algorithm 1 produced has the clustering property on R^Cj 

instead of R5.C2 and lacks an index on R2-Cr 

R, has the clustering property on Cx because, in the Index Selection Step during the first 

iteration, an index has been assigned to Cr The column Cx subsequently acquired the clustering 

property since the configuration (1 X) is less costly than (0 1), and the same configuration stayed 

until the algorithm terminated. Since the clustering design is performed in a separate step in 

Algorithm 1, the configuration (X 1), which is less costly than (1 X) cannot be reached without 

passing through (0 1). Thus, the deviation in this situation is partially due to the separation of the 

Index Selection Step and the Clustering Design Step, i.e., vertical partitioning. 

Let us note, however, that the error situation occurs because R5 obtains an index on Cx in the first 

Index Selection Step. (In comparison, Algorithm 3 docs not assign an index to R5.C1, even though it 
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also has separate Index Selection and Clustering Design Steps.) The index is assigned on Cx because 

it is more beneficial to use the join index method for Transaction 5 than to use the sort-merge 

method. The inner/outer-loop join method-the one used in the optimal solution-cannot be used 

in the index selection step because of the conditions for separability. Thus, horizontal partitioning 

also partially caused the deviation. We note that Algorithms 2 and 3, which utilize only one type of 

partitioning, do not produce any deviation. 

The index on R2.C1 is dropped by Algorithm 1 since, in processing Transaction 5, it is more 

beneficial to use the inner/outer-loop join method with the join direction from R2 to R5 and to drop 

the index on R2.C1 than to use the join index method while retaining that index. The inner/outer- 

loop join for R2 to R5 has an advantage especially because R5.CX has the clustering property. 

The access configuration produced by Algorithm 1 is only slightly different from the optimal 

solution. Accordingly, when the frequencies of the transactions are changed in Situations 51 and 52, 

this deviation disappears and all three algorithms find the optimal solution. 

2. Algorithm 1 and Algorithm 3 in Situation 42 

The deviation in this situation occurred due to a very peculiar reason that the access 

configurations (0 0 X) for relation DOCKS yields the exactly same cost as those of (1 0 X) and (0 1 

X). (Optimal solutions are (1 X X) and (X 1 X).) The access configuration (0 0 X) is obtained from 

the Index Selection Step of the first iteration. Since, in the next step (Clustering Design Step) the 

clustering property is assigned only if there is nonzero improvement in the cost, the clustering 

property cannot be assigned. (That is, neither (1 0 X) nor (0 1 X) docs not yield positive 

improvement in the cost compared with (0 0 X).) 

If the clustering property were assigned to any one of the first two columns, the other of the two 

would be dropped in the Index Selection Step of the next iteration yielding an optimal solution. 
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This deviation could be made somewhat significant: by deliberately adjusting the frequency of 

Transaction 12 up to 175, a deviation of 27.2% has been observed. However, since the mechanism 

that caused this error is very peculiar, it is believed that the chance of the mechanism being invoked 

is negligible when more transactions acting upon relation DOCKS are added in the usage. (The 

chance that two different access configurations have the exactly same cost is very slim.) Also, when a 

large database is considered, the local deviation caused by this mechanism might well be just a small 

portion of the entire cost, so that the relative deviation of the entire design may be negligible. 
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Appendix K. The Physical Database Design 
Optimizer-An Implementation 

In this section we introduce the Physical Database Design Optimizer(PhyDDO) which 

implements the three design algorithms. Also, a set of input situations that have been tested to 

validate the design algorithms and their results are presented. 

As in Appendix J.4, the following notation will be used throughout this appendix: 

1: A clustering column with an index 
0: A column with an index only 
X: A column with neither an index nor the clustering property 
*: A column with the clustering property but no index 

The PhyDDO is an experimental system to develop various heuristics for the physical database 

design. Besides the three design algorithms, implemented in the PhyDDO are the Exhaustive- 

Search Algorithm and the one-shot evaluator that simply evaluates the cost of the access 

configuration initially given by the user. The latter has been proved to be an effective tool for 

debugging the system. The system accepts eight types of transactions: 

SQ: Single-relation (one-variable) queries 

JQ: Two-relation (two-variable) queries having join predicates (i.e., two-relation joins) 

AQ: Single-relation queries having aggregate operators in their SELECT clauses, or 
GROUP BY constructs [CHA 76] or both. (A type AQ transaction is essentially a 
partial-join between the GROUP BY column and the relation itself as far as the 
I/O access cost is concerned.) 

SU: Single-relation update transactions. 

JU: Update transactions having join predicates. 

SD: Single-relation deletion transactions. 

JD: Deletion transactions having join predicates. 

INS: Insertion transactions (single-relation transactions only). 
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Transactions are specified together with their types and frequencies as the input usage 

information. On the other hand, the schema and the data characteristics for the database are 

specified as the input schema information. An example of complete input information for a 

database consisting of two relations is presented in Figure K-l. 
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SCHEMA 
RELATIONS 

RELATION Rl 
RELCARD 50 
NBLOCKS 10 
BLKFAC  5 
COLUMN Cl 

C0LCARO SO 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 1 
INDEX 1 

COLUMN C2 
COLCARD 60 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

COLUMN C3 
COLCARD 50 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

RELATION R2 
RELCARD 1000 
NBLOCKS 100 
BLKFAC 10 
COLUMN Cl 

COLCARD 1000 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

COLUMN C2 
COLCARD 7 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

COLUMN C3 
COLCARD 50 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 1 
INDEX 1 

CONNECTIONS 

CONNECTION 
REL1       Rl 
COL1       Cl 
JSEL1       1 .0 
RELN       R2 
COLN       C3 
JSELN       1 .0 

USAGE 
TRANSACTION 1 

TYPE SO        FREQ 100 
SELECT R1.C1. Rl. C3 
FROM  Rl(0.5) 
WHERE  R1.C2 = "ANY" AND 

R1.C1 - 3 

TRANSACTION 2 
TYPE JQ        FREQ 50 
SELECT R1.C1, R2.C1 
FROM   Rl(0.3). R2(0.3) 
WHERE  R1.C1 = R2.C3 AND 

R2.C1 > 500 

TRANSACTION 3 
TYPE SU        FREQ 10 
UPDATE Rl 
SET    R1.C3 = "ANY" 
WHERE  R1.C2 = "ANY" 

TRANSACTION  4 
TYPE JU 
UPDATE R2 

FREQ 10 
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SET   R2.C2 = R2.C2 + 1 
FROH  R2(t). Rl(0.3) 
WHERE  R2.C3 = Ri.Cl AND 

R1.C3 = "ANY" AND 
R2.C2 > 5 

TRANSACTION 5 
TYPE SD        FREQ 10 
DELETE R2 
WHERE  R2.C2 >=■ 7 

TRANSACTION 6 
TYPE JD        FREQ 10 
DELETE Rl 
FROM   Rl, R2(0.2) 
WHERE  R1.C1 = R2.C3 AND 

R2.C2 > 7 

TRANSACTION  7 
TYPE INS       FREQ 10 
INSERT INTO R2: 

<1001. "ANY". 20000, 3, 1> 

Figure K-l:  An input specification for PhyDDO. 

The keywords used in the schema and usage specification in Figure K-l are explained below: 

Relcard: Number of tuples in a relation (relation cardinality). 

Number of disk blocks a relation occupies. 

Number of tuples in one disk block (blocking factor). 

Number of distinct values in a column (column cardinality). 

Number of disk blocks that an index would occupy if it existed. 

Number of index entries in one disk block (index blocking factor). 

Nblocks: 

Blkfac: 

Colcard: 

Niblk: 

Iblkfac: 

Clustered: 1 if the column is clustered in the initial access configuration given by the user; 0 
otherwise. If not explicitly specified, the default is 0. 

Index: 1 if the index exists in the initial access configuration given by the user; 0 
otherwise. If not explicitly specified, the default is 0. 

Mcolumn: A multiattribute column in a relation (virtual column). 

Components:       Component columns of a multiattribute column. 

Rell: The relation on the 1-side of 1-to-N relationship represented by a connection 
(Relation 1). 

Coll: Connecting attribute of Relation 1. A virtual column if there are more than one 
connecting attribute. 

Jsell: Ratio of the  number of distinct join column  values participating in the 
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unconditional join (a join without restriction predicate) to the total number of 
distinct join column values or the ratio of the number of nondangling tuples to 
the total number of tuples (join selectivity). 

RelN: The relation on the N-side of 1-to-N relationship represented by a connection 
(Relation N). 

ColN: Connecting attributes of Relation N. 

JselN: Join Selectivity for Relation N. 

Type: Transaction type. 

Freq: Relative frequency of a transaction. 

As outputs, the system produces the optimal access configuration of the database and the total 

processing cost. It also produces optimal join methods and their costs for two-variable transactions. 

Twenty one different input situations have been tested to validate the heuristics used in the design 

algorithms. The input situations tested consist of seven schemas, each schema being accompanied 

by three variations of usage specification. First, the transactions and their frequencies are defined so 

that by intuition they look most natural. Second, according to the test result with the first usage 

specification, the frequencies are modified so that the costs of transactions are roughly of the same 

order. This modification prevents a few most costly transactions from dominating the results of the 

design. Third, all the queries are eliminated from the usage specification leaving only update 

transactions. This modification simulates a situation where there are heavy updates. 

Described in Figures K-2 to K-8 are all the tested input situations as they are submitted to the 

Physical Database Design Optimizer together with their optimal solutions. Each input situation is 

named as Situation ij where i € (1,2,3,4,5,6,7) shows which schema is used, and j € (0,1,2) which 

variation of the usage information is used. To simply the illustrations, for each schema, three 

situations with different usage specification have been merged into one figure: in the usage 

specification, relative frequencies from three situations arc specified in the same row in the order of 
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j; in the illustration of the optimal solutions (except for Situations 70, 71, and 72) three solutions are 

presented from the top in the order of j, using the notation introduced in Appendix J. For 

Situations 70, 71, and 72, optimal solutions are presented in text form since they are too big to be 

drawn in a figure. 

A copy of the source code for PhyDDO and an executable file are stored in <kbms> PhyDDO.pas 

and PhyDDO.exe at SRI-AI. The LALR syntax description of the usage and schema information 

(including the syntax of the transactions supported) can.be found in <kbms> PhyDDO.grammar. 
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SCHEMA 
RELATIONS 

RELATION Rl 
RELCARD 50 
NBLOCKS 10 
BLKFAC  5 
COLUMN Cl 

COLCARD SO 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 1 
INDEX 1 

COLUMN C2 
COLCARD 50 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

COLUMN C3 
COLCARD 50 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

RELATION R2 
RELCARD 1000 
NBLOCKS 100 
BLKFAC 10 
COLUMN Cl 

COLCARD 1000 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

COLUMN C2 
COLCARD 7 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 0 
INDEX 0 

COLUMN C3 
COLCARD 50 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 1 
INDEX 1 

CONNECTIONS 

CONNECTION 
REL1 Rl 
COL1 Cl 
JSEL1 1.0 
RELN R2 
COLN C3 
JSELN 1.0 

USAGE 
TRANSACTION 1 

TYPE SO FREQ 100 
SELECT Rt.Cl, R1.C3 
FROM   Rl(0.5) 
WHERE  R1.C2 = •ANY" AND 

R1.C1 ' 3 

1000 Deleted 

TRANSACTION 2 
TYPE JQ        FREQ 50 
SELECT Rl.Cl. R2.C1 
FROM  Rl(0.3). R2(0.3) 
WHERE  R1.C1 = R2.C3 AND 

R2.C1 > 500 

50 Deleted 

TRANSACTION  3 
TYPE SU        FREQ 10 
UPDATE Rl 
SET    R1.C3 = "ANY- 
WHERE  R1.C2 = "ANY" 

100 100 

TRANSACTION 
TYPE JU FREQ 10 100 100 
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UPDATE R2 
SET R2 C2 = R2.C2 + 1 
FROM R2(l) Rl(0.3 

= Rl.Cl WHERE R2 C3 AND 
Rl C3 = "ANY" AND 

SACTIO 

R2 

4 

C2 > 5 

TYPE SD FREQ 10 
DELETE R2 
WHERE R2 C2 >= 7 

SACTIOH 
TYPE JD FREQ 10 
DELETE Rl 
FROM Rl R2 (0.2) 
WHERE Rl Cl = R2.C3 AND 

R2 C2 > 7 

100 100 

100 100 

TRANSACTION  7 
TYPE INS       FREQ 10 1000 1000 
INSERT INTO R2: 

<1001. "ANY". 20000, 3. 1> 

194 



APPENDIX K.     THEPIIYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION 

SCHEMÄ1X 

R1 50 

C1 C2 C3 

50 50 50 

1 
1 
1 

X 
X 
X 

1 
1 
1 

} <: 
R2 100C ) 

C1 C2 C3 

1000 7 50 

1 
1 
1 

X 
X 
X 

X 
X 
X 

10 

100 

Figure K-2:  Situations 10,11,12, and their optimal solutions. 
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SCHEMA 
RELATIONS 

RELATION COUNTRIES 
RELCARD 100 
NBLOCKS 20 
BLKFAC 5 

COLUMN COUNTRYNAME 
COLCARD 100 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN POPULATION 
COLCARD 100 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

RELATION SHIPS 
RELCARD 1000 
NBLOCKS 100 
BLKFAC 10 

COLUMN ID 
COLCARD 1000 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN S«-C0UNTRY 
COLCARD 30 
NIBLK 5 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

RELATION VOYAGES 
RELCARD 100000 
NBLOCKS 5000 
BLKFAC 20 

COLUMN SHIP<-ID 
COLCARD 1000 
NIBLK 500 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN VOYAGENO 
COLCARD 200 
NIBLK 500 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN CHARTERER 
COLCARD 10000 
NIBLK 500 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

RELATION SHIP<-CHARTERER 
RELCARD 10000 
NBLOCKS 500 
BLKFAC 20 

COLUMN C<-NAME 
COLCARD 10000 
NIBLK 50 
IBLKFAC 200 
CLUSTERED      0 
INDEX 1 

COLUMN C*-COUNTRY 
COLCARD 100 
NIBLK 50 
IBLKFAC 200 
CLUSTERED      0 
INDEX 1 

CONNECTIONS 
CONNECTION 

REL1 COUNTRIES 
C0L1 COUNTRYNAME 
JSEI.1 0.3 
RELN SHIPS 
COIN S«-COUNTRY 
JSELN 1.0 
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CONNECTION 
REL1 SHIPS 
C0L1 ID 
JSEL1 1.0 
RELN VOYAGES 
COLN SID 
JSELN 1.0 

CONNECTION 
REL1 SHIP-CHARTERER 
COL1 C<-NAME 
JSEL1 1.0 
RELN VOYAGES 
COLN CHARTERER 
JSELN 1.0 

CONNECTION 
REL1 COUNTRIES 
COL1 COUNTRYNAHE 
JSEL1 1.0 
RELN SHIP-CHARTERER 
COLN C<-COUNTRY 
JSELN 1.0 

USAGE 
TRANSACTION 1 

TYPE    SO FREQ    100 100    Deleted 
SELECT  COUNTRIES.POPULATION 
FROM    COUNTRIES(0.3) 
WHERE   COUNTRIES.COUNTRYNAME = "USA" 

TRANSACTION 2 
TYPE    SQ      FREQ 
SELECT  SHIPS.S<-COUNTRY 
FROM    SHIPS(0.3) 
WHERE   SHIPS.ID = 101 

100 100 Deleted 

TRANSACTION 3 
TYPE   JQ     FREQ   20     20     Deleted 
SELECT  SHIPS.TD, COUNTRIES.POPULATION 
FROM    SHIPS(0.3). COUNTRIES(0.3) 
WHERE   SHIPS.S-COUNTRY = COUNTRIES.COUNTRYNAME AND 

SHIPS.ID = 101 

TRANSACTION 4 
TYPE    JQ      FREQ    20      20     Deleted 
SELECT  SHIP-CHARTERER.C-NAME. COUNTRIES . POPULATION 
FROM    SHIP-CHARTFRER(0.3). COUNTRIES(0.5) 
WHERE   SH1P<-CHARTFRER.C<-C0UNTRY = COUNTRIES .COUNTRYNAME 

SHIP-CHARTERER.C-NAME = "SMITH-TRADING-CO" 

TRANSACTION 5 
TYPE   JQ     FREQ   50     10     Deleted 
SELECT  VOYAGES.CHARTERER, VOYAGES.SID, SHIPS .S<-COUNTRY 
FROM    SHIPS(0.5), VOYAGES(0.5) 
WHERE   SHIPS.ID = VOYAGES.SID AND 

VOYAGES.CHARTERER = "SMITH-TRADING-CO" 

AND 

TRANSACTION 6 
TYPE 
SELECT 

FROM 
WHERE 

Deleted 
VOYAGES.CHARTERER, 

JQ      FREQ    50      2 
VOYAGES.SID. VOYAGES.VNUMBER 
SHIP-CHARTERER.C-COUNTRY 
V0YAGES(0.5). SHIP<-CHARTERER(0.5) 
VOYAGES.CHARTERER = SHIP-CHARTERER .C«-NAME  AND 
VOYAGES.SID = 17 

TRANSACTION 7 
TYPE SU      FREQ    5 
UPDATE COUNTRIES 
SET COUNTRIES.POPULATION = 
WHERE COUNTRIES.COUNTRYNAME 

35000000 
' "KOREA" 

TRANSACTION 8 
TYPE    SD      FREQ    100     100     100 
DELETE  VOYAGFS 
WHFRE   VOYAGFS.SID = 51 AND 

VOYAGFS. CHARTERER » "SMITH«-TRADING<-CO" 

TRANSACTION 9 
TYPE    INS     FREQ    10 
INSERT INTO SHIPS: 

<1051, "ANY-COUNTRY" 

1000 1000 

TRANSACTION 10 
TYPE SD     FREQ   50     1 
DELETE SHIP-CHARTERER 
WHERE SHIP-CHARTERER.C-COUNTRY = 'USSR" 

TRANSACTION 11 
TYPE JU      FREQ 
UPDATE SHIPS 
SET SHIPS.S-COUNTRY "BIG-COUNTRY" 
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FROH   SHIPS, COUNTRIES 
WHERE  SHIPS.S«-COUNTRY = COUNTRIES .COUNTRY<-NAME AND 

COUNTRIES.POPULATION > 100000000 AND 
SHIPS.ID - 100 
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SCHEMA2X COUNTRIES   100 

COUNTRYNAME POPULATION 20 

100 

SHIPS/1000 

ID 

1 
1 
1 

SHIP-CHARTER 10000 

S-COUNTRY 100 C-NAME C-COUNTRY 

10000 100 

X o   / 1 
X o   / 1 
X x  / 1 

VOYAGES  100000 

VOYAGENO CHARTERER 

1000 200 10000 

1 X 
1 X 
X X 

0 
0 
1 

500 

5000 

Figure K-3:  Situations 20, 21,22, and tlicir optimal solutions. 
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SCHEMA 
RELATIONS 

RELATION DEPTS 
RELCARD 100 
NBLOCKS 20 
BLKFAC 5 

COLUMN     DEPTNO 
COLCARD 100 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN     LOCATION 
COLCARD 20 
NIBLK 1 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

LATION EMPS 
RELCARD 10000 
NBLOCKS 1000 
BLKFAC 10 

COLUMN     EMPNO 
COLCARD 10000 
NIBLK SO 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN     DEPTNO 
COLCARD 100 
NIBLK 60 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN      JOB 
COLCARD 100 
NIBLK 50 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN     SALARY 
COLCARD 10000 
NIBLK 50 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

CHILDREN 
20000 
1000 
20 

COLUMN      EMPNO 
COLCARD 10000 
NIBLK 100 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN      NAME 
COLCARD 20000 
NIBLK 100 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CI.USTERFD 
INDEX 

AGE 
20 
100 
200 
0 
1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

FMP«-PROJ 
20000 
500 
40 

COLUMN     EMPNO 
COLCARD 10000 
NTBLK 100 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN PROJNO 
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COLCARD 100 
NIBLK 100 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

COLUMN PERCENT «-TIME 
COLCARD 100 
NIBLK 100 
IBLKFAC 200 
CLUSTERED 0 
INDEX 1 

CONNECTIONS 
CONNECTION 

REL1 DEPTS 
COL1 DEPTNO 
JSEL1 1.0 
RELN EMPS 
COLN DEPTNO 
JSELN 1.0 

CONNECTION 
REL1 EMPS 
C0L1 EMPNO 
JSEL1 1.0 
RELN CHILDREN 
COLN EMPNO 
JSELN 1.0 

CONNECTION 
REL1 EMPS 
COL1 EMPNO 
JSEL1 1.0 
RELN EMP<-PROJ 
COLN EMPNO 
JSELN 1.0 

USAGE 
TRANSACTION 1 

TYPE    SO FREQ 100 
SELECT  DEPTS.LOCATION 
FROM    DEPTS 
WHERE   DEPTS.DEPTNO = 15 

100 Deleted 

TRANSACTION 2 
TYPE   AQ     FREQ   20     20     Deleted 
SELECT  FMPS.DEPTNO, EMPS.JOB, AVG(EMPS.SALARY) 
FROM    FMPS(0.5) 
WHERE   FMPS.JOB = "WELDER" 
GROUP BY FMPS.DEPTNO 

TRANSACTION 3 
TYPE SO     FREQ   100    100    Deleted 
SEIECT FMP<-PROJ. EMPNO, EMP-PROJ. PROJNO, EMP*-PROJ. PERCENT«-TIME 
FROM FMP<-PROJ 
WHERE EMP«-PROJ. EMPNO = 293 

TRANSACTION 4 
TYPE   JQ     FREQ   20     6      Deleted 
SELECT  FMPS.DEPTNO, EMPS.EMPNO, EMP<-PROJ. PROJNO 
FROM    EMPS(0.3), EMP<-PROJ(0 . 3 ) 
WHERE   EMPS.FMPNO ■= EMP«-PROJ. EMPNO  AND 

EMP«-PROJ. PROJNO = 11 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

5 
JQ     FREQ   20     200    Deleted 
DEPTS.LOCATION 
DEPTS(0.5j, EMPS(0.3) 
DEPTS.DEPTNO = EMPS.DEPTNO  AND 
EMPS.EMPNO = 55 

TRANSACTION 6 
TYPE    JQ      FREQ    10      10 
SELECT  EMPS.DEPTNO. EMPS.EMPNO 
FROM    FMPS(0.3), CHI IDRFN(0.2) 
WHERF   FMPS.FMPNO = CHILDREN.EMPNO AND 

FMPS.JOB = "WELDFR"  AND 
CHILDREN.AGE < 10 

Deleted 

TRANSACTION 7 
TYPE   SU     FREQ   50     50     50 
UPDATF  EMPS 
SET     EMPS.SALARY = EMPS.SALARY + 1000 
WHERE   EMPS.JOB = "WELDER" 

TRANSACTION 
TYPE 
UPDATE 
SET 
FROM 
WHERE 

JU      FREQ    10      10      10 
EMP<-PROJ 
FMP*PnOJ.PERCFNT<-TIME = 30 
FMP^PROJ, FMPS(0.3) 
FMPS.FMPNO = FMP-PROJ.EMPNO  AND 
FMPS.DEPTNO = 5  AND 

201- 



APPENDIX K.      THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION 

EMP«-PROJ.PROJN0 =■ 17 

SACTION 9 
TYPE SD     FREQ   10 
DELETE EMPS 
WHERE EHPS.DEPTHO =■ 3 

TRANSACTION 10 
TYPE SD     FREQ   10     10     10 
DELETE DEPTS 
WHERE DEPTS.DEPTNO =■ 3 

TRANSACTION 11 
TYPE   JD     FREQ   5      2      2 
DELETE  EMPS 
FROM   EMPS, EMP<-PROJ(0.3) 
WHERE   EMPS.EMPNO = EMP<-PROJ. EMPNO  AND 

EMP«-PROJ.PROJNO = 5 

TRANSACTION 12 
TYPE   SD     FREQ   10     100    100 
DELETE  CHILDREN 
WHERE  CHILDREN.EMPNO » 175 
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DEPTS 100 SCHEMA3X 

DEPTNO 

100 
A 

LOCATION 20 
20 

1 
1 
1 

EMPS 

X 
X 
X 
10000 

DEPTNO EMPNO JOB SALARY 1000 
100 10000 

1 X 
1 X 
1 X 

EMP-PROJ     20000 

EMPNO PROJNO PERCENT-TIME 
10000 Q    100 

20000 Q 
0 

1 
1 
1 

100 X 
X 
X 

EMPNO NAME AGE 1000 
10000 

1 
1 
1 

200 

X 
X 
X 

20 

X 
X 
X 

Figure K-4:   Situations 30, 31, 32, and their optimal solutions. 
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SCHEMA 
RELATIONS 

RELATION       PORTS 
RELCARD    1000 
NBLOCKS     200 
BLKFAC     5 

COLUMN     P<-NAME 
COLCARD 1000 
NIBLK 10 
IBLKFAC 100 
CLUSTERED 0 
INDEX 1 

COLUMN     NUM<-SHIPS 
COLCARD 20 
NIBLK 10 
IBLKFAC 100 
CLUSTERED 0 
INDEX 1 

COLUMN     NUM-WHOUSE 
COLCARD 50 !MAX 50 WAREHOUSES/PORT! 
NIBLK 10 
IBLKFAC 100 
CLUSTERED 0 
INDEX 1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

DOCKS 
5000 
1000 
5 

COLUMN      P<-NAME 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN     DOCKNO 
COLCARD 

NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

1000 
50 
100 
0 
1 

100 

50 
100 
0 
1 

1DOCK-NUMBER DOES NOT HAVE TO BE NUMBERED 
CONTIGUOUSLY! 

COLUMN SHIP-ID 
COLCARD 3000 !NOT EVERY DOCK HAS A SHIP ANCHORED! 
NIBLK 50 
IBLKFAC 100 
CLUSTERED 0 
INDEX 1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

WAREHOUSES 
10000 !10 WAREHOUSED/PORT ON THE AVERAGE! 
2000 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

P<-NAME 
1000 
100 
100 
0 
1 

COLUMN     WHOUSENO 
COLCARD        200 
NIBLK 100 
IBLKFAC        100 
CLUSTERED      0 
INDEX 1 

COLUMN     CARGOCLASS 
COLCARD        100 
NIBIK 100 
IBIKFAC 100 
CLUSTERED      0 
INDEX 1 

RELATION CARGOCLASSES 
RELCARD 100 
NBLOCKS 50 
BLKFAC 2 

COLUMN     CARGOCLASS 
COLCARD        100 
NIBLK 1 
IBLKFAC 100 
CIUSTFRED      0 
INDEX 1 
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COLUMN     W-UNIT 
COLCARD 60 
NIBLK 1 
IBLKFAC 100 
CLUSTERED 0 
INDEX 1 

CONNECTIONS 
CONNECTION 

REL1 
COL1 
JSEL1 
RELN 
COLN 
JSELN 

PORTS 
P-NAME 
1.0 
DOCKS 
P«-NAME 
1.0 

CONNECTION 
REL1 
COL1 
JSEL1 
RELN 
COLN 
JSELN 

PORTS 
P-NAME 
1.0 
WARENOUSES 
P-NAME 
1.0 

CONNECTION 
REL1 
COL1 
JSEL1 
RELN 
COLN 
JSELN 

CARGOCLASSES 
CARGOCLASS 
1.0 
WAREHOUSES 
CARGOCLASS 
1.0 

USAGE 
TRANSACTION 

TYPE 
SELECT 
FROH 
WHERE 

1 
SQ     FREQ 
DOCKS. SHI P-ID 
DOCKS 
DOCKS. P«-NAME = 
DOCKS.DOCKNO - 

100 

"P0RT«-A" 
3 

SO 

AND 

Deleted 

TRANSACTION 2 
TYPE   SQ     FREQ 
SELECT  DOCKS.P-NAME, 
FROM   DOCKS 
WHERE   DOCKS. SHIP-ID 

100    50 
DOCKS.DOCKNO 

101 

Deleted 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

3 
SQ     FREQ    100 
PORTS. NUM-SHI PS 
PORTS 
PORTS. P-NAME = "PORT-A" 

SO Deleted 

TRANSACTION 4 
TYPE 
SELECT 

FROM 
WHERE 

JQ     FREQ   20     10     Deleted 
PORTS. P-NAME, PORTS.NUM-WHOUSE, WAREHOUSE .WHOUSENO, 
WAREHOUSES.CARGOCLASS 
PORTS(0.5). WARFHOUSES(l) 
PORTS.P-NAME = WAREHOUSES.P-NAME 
PORTS.P-NAME = "PORT-A" 

AND 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

5 
JQ     FREQ   20     2     Deleted 
WAREHOUSES.P-NAME, WAREHOUSES.WHOUSENO 
WAREHOUSES(0.5). CARGOCLASSES(0.3) 
WAREHOUSES.CARGOCLASS » CARGOCLASSES.CARGOCLASS 
CARGOCLASSES.W-UNIT = "GALLON" 

AND 

TRANSACTION 6 
TYPE    SU     FREQ    100    CO     50 
UPDATE  PORTS 
SET    PORTS.NUM-SHIPS = PORTS.NUM-SHIPS + 1 
WHERE   PORTS.P-NAME = "PORT-A" 

TRANSACTION 7 
TYPE   SU     FREQ   1      50     50 
UPDATE  PORTS 
SET    PORTS.NUM-WHOUSE = PORTS.NUM-WHOUSE 
WHERE   PORTS.P-NAME = "PORT-A" 

+ 1 

TRANSACTION 8 
TYPE   SQ     FREQ   50     5      Deleted 
SELECT WAREHOUSES.P-NAME, WAREHOUSES.WHOUSENO 
FROM   WAREHOUSES 
WHERE  WAREHOUSES.CARGOCLASS = "EXPLOSIVES" 

TRANSACTION 9 
TYPE JQ     FREQ   20     20    Deleted 
SELECT PORTS.P-NAME, PORTS.NUM-SHIPS, DOCKS.DOCKNO, DOCKS.SHIP 
FROM P0RTS(0.5). DOCKS(l) 
WHERE PORTS.P-NAME = DOCKS.P-NAME  AND 

PORTS.P-NAME = "PORT-A" 

-ID 
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TRANSACTION 10 
TYPE SU     FREQ   100 100 
UPDATE DOCKS 
SET DOCKS.SHIP«-ID - 101 
WHERE DOCKS. P«-NAME « "PORTt-A" 

DOCKS.DOCKNO - 3 
AND 

100 

TRANSACTION 11 
TYPE    INS    FREQ   1 
INSERT  INTO   CARGOCLASSES: 

<"FROZEN<-FISH". "TON"> 

30 30 

TRANSACTION 12 
TYPE   INS    FREQ   1 
INSERT  INTO   DOCKS: 

<"PORT«-A", 7, 0> 

20 

TRANSACTION 13 
TYPE   INS    FREQ   1      20 
INSERT  INTO   WAREHOUSES: 

<"PORT<-A", 15, "FROZEN«-FISH" 

20 

20 
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SCHEMA4X 

PORTS      10QO 

P-NAME NUM-SHIPS NUM-WHOUSE 200 

20 50 

X x 
X x 
X  WAREHOUSESX 10000 

WHOUSENO CARGOCLASS 

A 

1000 0 200   x 
0 x 

DOCKS    X 5000 X 

P-NAME DOCKNO SHIP-ID 1000 

1000 100 3000 

1 
1 
1 

X 
X 
X 

0 
0 

CARGOCLÄSSES 

50 W-UNIT 

100   1 
1 
X 

100 
:vki 

CARGOCLASS 

100 50 

X 1 
X 1 
X X 

Figure K-5:  Situations 40,41,42, and their optimal solutions. 
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SCHEMA 
RELATIONS 

RELATION Rl 
RELCARD 200 
NBLOCKS 40 
BLKFAC S 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

200 
4 
50 
0 
1 

COLUMN     C2 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

170 
4 
SO 
0 
1 

RELATION R2 
RELCARD 10000 
NBLOCKS 2000 
BLKFAC 5 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

10000 
200 
SO 
0 
1 

COLUMN     C2 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

200 
200 
50 
0 
1 

COLUMN     C3 
COICARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

300 
200 
SO 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

C4 
60 
200 
50 
0 
1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

R3 
300 
60 
5 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

300 
6 
50 
0 
1 

COLUMN     C2 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

100 
6 
50 
0 
1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

R4 
60 
12 
S 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

Cl 
60 
2 
50 
0 
1 

COLUMN 
COLCARD 
NTBLK 
IBLKFAC 
CLUSTERED 
INDEX 

C2 
60 
2 
50 
0 
1 

RELATION R5 

-208- 



APPENDIX K.      THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION 

RELCARD    200000 
NBLOCKS    40000 
BLKFAC     5 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN     C2 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

10000 
4000 
SO 
0 
1 

100 
4000 
SO 
0 
1 

CONNECTIONS 
CONNECTION 

REL1 
C0L1 
JSEL1 
RELN 
COLN 
JSELN 

Rl 
Cl 
1.0 
R2 
C2 
1.0 

CONNECTION 
REL1 
COL1 
JSEL1 
RELN 
COLN 
JSELN 

CONNECTION 
REL1 
COL1 
JSEL1 
RELN 
COLN 
JSELN 

R3 
Cl 
1.0 
R2 
C3 
1.0 

R2 
Cl 
1.0 
R5 
Cl 
1.0 

CONNECTION 
REL1 
COL1 
JSEL1 
RELN 
COLN 
JSELN 

R4 
Cl 
1.0 
R2 
C4 
1.0 

USAGE 
TRANSACTION 1 

TYPE 
SELECT 
FROM 
WHERE 

JQ FREQ 
R1.C2. R2.C2 
Rl, R2 
R1.C1 = R2.C2 
R1.C2 = 100 
R2.C3 = "NAME" 

20 
R2.C3, 

100 
R2.C4 

Deleted 

AND 
AND 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

2 
JQ      FREQ    20 
R2.C1, R2.C4, R3.C1. 
R2, R3 
R2.C3 = R3.C1   AND 
R2.C4 = "KOREA" AND 
R3.C2 = 40 

40 
R3.C2 

Deleted 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

3 
JQ FREQ 
R2.C1, R2.C4 
R2, R4 
R2.C4 = 
R2.C1 = 
R2.C2 = 
R4.C2 = 

20 
R4.C2 

R4.C1 AND 
101 AND 
"TANKER"AND 
10000000 

10 Deleted 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

4 
JQ FREQ 20 60 
R2.C1. R2.C3, R2.C4. R5.C2 
R2, R5 
R2.C1 - R5.C1 AND 
R2.C4 = "USA" AND 
R2.C3 = "AMERICAN<-OIL*-CO" 

Deleted 

TRANSACTION 
TYPE 
UPDATE 
SET 
FROM 
WHERE 

5 
JU 
R2 
R2 
R2 
R2 

C3 = 
R5 

Cl = 

FREQ 

"USA" 

R2.C3 

2.5 2.5 

R5.C1  AND 
"BRITAIN" AND 
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R5.C2 > 101 

TRANSACTION 
TYPE 
DELETE 
FROM 
WHERE 

6 
JD     FREQ   5 
R4 
R4. R2 
R4.C1 *  R2.C4  AND 
R2.C1 = 101    AND 
R2.C2 =■ "TANKER" 

TRANSACTION 
TYPE 
DELETE 
WHERE 

7 
SD 
RS 
R5.C2 

FREQ   20 

> 50 

TRANSACTION 
TYPE 
UPDATE 
SET 
WHERE 

8 
SU 
R2 
R2.C2 
R2.C4 

FREQ   20 

= "TANKER" 
> "USA" 

TRANSACTION 
TYPE 
DELETE 
WHERE 

9 
SD 
R2 
R2.C2 

FREQ   20 

= "TANKER" 

TRANSACTION 
TYPE 
INSERT 

10 
INS    FREQ   20 
INTO   Rl: 
<"TANKER", 50> 

TRANSACTION 
TYPE 
DELETE 
WHERE 

11 
SD 
R3 
R3.C2 

FREQ   20 

> 100 

TRANSACTION 
TYPE 
UPDATE 
SET 
WHERE 

12 
SU 
R4 
R4.C1 
R4.C2 

FREQ   20 

= "USA" 
= 200000000 

10 10 

0.01        0.01 

120 120 

80 80 
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SCHEMA5X R1   200 

R3   300 

R5   200000 

C1 C2 

60 
0 

40000   0 
10000 

X 
1 
1 

100 
0 
X 
X 

60 
1 
1 
1 

60 

12 

Figure K-6:  Situations 50,51,52, and thcir optimal solutions. 
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SCHEMA 
RELATIONS 

RELATION       Rl 
RELCARD    1000 
NBLOCKS    200 
BLKFAC     5 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

1000 
10 
100 
0 
1 

COLUMN     C2 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

20 
10 
100 
0 
1 

COLUMN     C3 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

50 !MAX 50 WAREHOUSES/PORT! 
10 
100 
0 
1 

RELATION       R2 
RELCARD     5000 
NBLOCKS     1000 
BLKFAC     5 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

1000 
50 
100 
0 
1 

COLUMN     C2 
COLCARD 

NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

100 IDOCK-NUMBER DOES NOT HAVE TO BE NUMBERED 
CONTIGUOUSLY! 

50 
100 
0 
1 

COLUMN     C3 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

3000 !NOT EVERY DOCK HAS A SHIP ANCHORED! 
50 
100 
0 
1 

RELATION       R3 
RELCARD     10000 
NBLOCKS     2000 
BLKFAC      5 

110 WAREHOUSED/PORT ON THE AVERAGE! 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

1000 
100 
100 
0 
1 

COLUMN     C2 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

200 
100 
100 
0 
1 

COLUMN     C3 
COLCARD 
NIBLK 
IBIKFAC 
CLUSTERED 
INDEX 

100 
too 
100 
0 
1 

RELATION       R4 
RELCARD    100 
NBLOCKS    50 
BLKFAC      2 

COLUMN     Cl 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

100 
1 
100 
0 
1 
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COLUMN     C2 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SO 
1 
100 
0 
1 

CONNECTIONS 
CONNECTION 

REL1 
C0L1 
JSEL1 
RELN 
COLN 
JSELN 

Rl 
Cl 
1.0 
R2 
Cl 
1.0 

CONNECTION 
REL1 
C0L1 
JSEL1 
RELN 
COLN 
JSELN 

Rl 
Cl 
1.0 
R3 
Cl 
1.0 

CONNECTION 
REL1 
COL1 
JSEL1 
RELN 
COLN 
JSELN 

R4 
Cl 
1.0 
R3 
C3 
1.0 

USAGE 
TRANSACTION 

TYPE 
SELECT 
FROM 
WHERE 

1 
JQ FREQ 100 
R1.C1, R1.C2, R2.C2 
Rl(0.5), R2(0.5) 
R1.C1 = R2.C1 AND 
R1.C3 = "ANY" AND 
R2.C3 - "ANY" AND 
R1.C2 > "ANY" 

300    Deleted 

TRANSACTION 2 
TYPE JQ FREQ 100 
SELECT R1.C3, R2.C1, R2.C3 
FROM R1(0.5), R2(0.5) 
WHERE Rl.CI = R2.C1 AND 

R1.C2 = "ANY" AND 
R2.C2 = "ANY" 

500    Deleted 

TRANSACTION 3 
TYPE 
SELECT 
FROM 
WHERE 

JQ FREQ 
R1.C2, R3.C1 
Rl 0.5) 
Rl.CI = 
R1.C2 = 
R3.C2 = 
R3.C3 = 

100 
R3.C2 

R3(0.5) 
R3.C1   AND 

3000   Deleted 

"ANY" 
"ANY" 
"ANY" 

AND 
AND 

TRANSACTION 4 
TYPE 
SELECT 
FROM 
WHERE 

JQ      FREQ 
R1.C3, Rl.CI. 
Rl(0.5), R3(0.5) 
Rl.CI = R3.C1 

100 
R3.C3 

R1.C3 = 
R1.C2 = 
R3.C2 = 

2000   Deleted 

"ANY" 
"ANY" 
"ANY" 

AND 
AND 
AND 

TRANSACTION 5 
TYPE    JQ      FREQ    100 
SELECT  R3.C2, R4.C1, R4.C2 
FROM    R3(0.5), R4(0.5) 
WHERE   R3.C3 = R4.C1   AND 

R3.C1 = "ANY"   AND 
R3.C2 = "ANY"   AND 
R4.C2 > "ANY" 

5000   Deleted 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

6 
JQ      FREQ    100 
R3.C1. R3.C3, R4.C2 
R3(0.5), R4(0.5) 
R3.C3 = R4.C1  AND 
R3.C1 > "ANY" 

5     Deleted 

TRANSACTION 
TYPE 
SELECT 
FROM 
WHERE 

7 
AQ 
R3.C2 
R3 
R3.C1 = "ANY 

FREQ   100 
AVG(R3.C3) 

1000   Deleted 

GROUP BY R3.C2 
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TRANSACTION 8 
TYPE SQ FREQ 100 
SELECT R1.C2 
FROM Rl 
WHERE R1.C3 - "ANY" AND 

R1.C1 - "ANY" 

TRANSACTION 9 
TYPE SQ FREQ 100 
SELECT R2.C3 
FROM R2 
WHERE R2.C1 - "ANY" AND 

R2.C2 =■ "ANY" 

TRANSACTION 10 
TYPE JU FREQ 100 
UPDATE R3 
SET R3.C1 - "ANY" 
FROM R3, R4 
WHERE R3.C3 » R4.C1 AND 

R3.C2 * "ANY" AND 
R4.C2 - "ANY" 

TRANSACTION 11 
TYPE JU FREQ 100 
UPDATE R3 
SET R3.C2 > "ANY" 
FROM R3. Rl 
WHERE R3.C1 - R1.C1 AND 

R1.C3 - "ANY" 

TRANSACTION 12 
TYPE SD FREQ 100 
DELETE R2 
WHERE R2.C2 - "ANY" 

TRANSACTION 13 
TYPE SD FREQ 100 
DELETE Rl 
WHERE R1.C3 - "ANY" 

TRANSACTION 14 
TYPE SD FREQ 100 
DELETE R3 
WHERE R3.C2 « "ANY" 

TRANSACTION 15 
TYPE INS FREQ 100 
INSERT INTO R4: 

<"ANY", "ANY"> 

5000   Deleted 

5000   Deleted 

100    100 

10     10 

100    100 

500    500 

200    200 

5000   5000 
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SCHEMA6X 
R1   1000 

2000 

50 
50 100 

1 X 
1 X 
1 X 

Figure K-7:  Situations 60,61,62, and their optimal solutions. 
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1512 WORDS - 2560 BYTES/ BLOCKI 
SCHEMA 

RELATIONS 
RELATION 

RELCARD 
NBLOCKS 
BLKFAC 

FUELTYPES 
8 
1 
173 

115 BYTES 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

FUELTYPE 
8 
1 
256 
0 
1 

15 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

PRICE 
8 
1 
256 
0 
1 

15 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

UNIT 
4 
1 
256 
0 
1 

15 BYTES! 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

SHIPTYPES 
15 
8 
2 

11005 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPTYPE 
15 
1 
256 
0 
1 

15 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

DESCRIPTION 
15 
8 
2 
0 
1 

11000 BYTES! 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

SHIPCLASSES 
29 
1 
38 

!66 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPTYPE 
15 
1 
256 
0 
1 

15 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPCLASS 
29 
1 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

FUELTYPE 
8 
1 
256 
0 
1 

15 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

WCAP 
29 
1 
284 
0 
1 

16 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBIKFAC 
CLUSTERED 
INDEX 

VCAP 
29 
1 
284 
0 
1 

16 BYTES! 

COLUMN CRFWSZ !3 BYTES! 
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COLCÄRD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

29 
1  ' 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LIFEBOATCAP 
29 
1 
256 
0 
1 

15 BYTES 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

FUELCAP 
29 
1 
256 
0 
1 

15 8YTESI 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

CRUISESPD 
29 
1 
320 
0 
1 

13 BYTES 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

MAXSPD 
29 
1 
320 
0 
1 

13 BYTES 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

FUELCONSATMAX 
29 
1 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

FUELCONSATCRUISING 13 BYTES! 
29 
1 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

BEAM 
29 
1 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LENGTH 
29 
1 
284 
0 
1 

!4 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

MAXDRAFT 
29 
1 
320 
0 
1 

!3 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

DEADWET'jU 
29 
1 
284 
0 
1 

16 BYTES! 

RELATION 
REICARD 
NBLOCKS 
BLKFAC 

SHIPS 
2870 
111 
26 

198 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPNAME 
2870 
35 
82 
0 
1 

!26 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 

SHIPID 
2870 
12 
256 

15 BYTES! 
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CLUSTERED 
INDEX 

0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPCLASS 
29 
9 
320 
0 
1 

!3 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

IRCS 
2870 
13 
232 
0 
1 

16 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

HULLNUMBER 
2870 
11 
284 
0 
1 

14 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

OWNER 
1000 
40 
73 
0 
1 

130 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COUNTRYOFREGISTRY 12 BYTES! 
50 
8 
365 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LATITUDE 
2870 
11 
284 
0 
1 

14 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

NORS 
2 
7 
426 
0 
1 

11 BYTE! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LONGITUDE 
2870 
11 
284 
0 
1 

!5 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

EORW 
2 
7 
426 
0 
1 

11 BYTE! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

DATEREPORTED 
30 
13 
232 
0 
1 

16 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IßlKFAC 
CLUSTERED 
INDEX 

TIMEREPORTED 
975 
11 
284 
0 
1 

!4 BYTES! 
1 < 24 X 60! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

ATPORTORSEA 
2 
7 
426 
0 
1 

11 BYTE! 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

COUNTRIES 
234 
4 
62 

141 BYTES! 
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COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COUNTRYNAME 
234 
4 
73 
0 
1 

130 BYTESI 

COLUMN 
COLCARD 
NIBLK 
IOLKFAC 
CLUSTERED 
INDEX 

COUNTRYABB 
234 
1 
365 
0 
1 

12 BYTESI 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

POPULATION 
234 
2 
182 
0 
1 

19 BYTESI 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

SHIPCLASSCARGOCLASS 121 BYTES! 
290            !10 CARGOCLASSES/SHIPCLASSI 
3 
121 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPCLASS 
29 
1 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

CARGOCLASS 
175 
1 
232 
0 
1 

16 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

MAXVOLUME 
175 
1 
232 
0 
1 

16 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

MAXWEIGHT 
125 
1 
232 
0 
1 

16 BYTES! 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

CARGOCLASSES 
25 
1 
106 

124 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

CARGOCLASS 
25 
1 
232 
0 
1 

16 BYTESI 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

WUNIT 
20 
1 
170 
0 
1 

19 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

VUNIT 
23 
1 
170 
0 
1 

19 BYTES! 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

VOYAGES 
8610 
129 
67 

138 BYTES! 
13 MOST RECENT VOYAGES/SHIP! 

COLUMN 
COLCARD 
NIBLK 

SHIPID 
2870 
34 

!5 BYTESI 
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IBLKFAC 
CLUSTERED 
INDEX 

256 
0 * 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTEREO 
INDEX 

VOYAGENUMBER   13 BYTES! 
350           !MAX 350 VOYAGES/SHIPI 
27 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

CHARTERER      130 BYTESI 
750 
102 
85 
0 
1 

MCOLUMN           SHIPID«-VOYAGENUMBER 18 BYTES! 
COLCARD       8610 
NIBLK         44 
IBLKFAC        196 
COMPONENTS 

SHIPID 
VOYAGENUMBER 

CLUSTERED      0 
INDEX         1 

TION 
RELCARD 
NBLOCKS 
BLKFAC 

LEGS          117 BYTESI 
17220         12 LEGS/VOYAGE! 
115 
150 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPID         !5 BYTESI 
2870 
68 
256 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

VOYAGENUMBER    13 BYTES! 
350 
54 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LEGNUMBER      13 BYTESI 
10 
54 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SOURCESTOP     13 BYTES! 
11            10..10! 
54 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

DESTINATIONSTOP 13 BYTESI 
11 
54 
320 
0 
1 

MCOLUMN           SHIPID<V:)YAGENUMBER !8 BYTESI 
COLCARD       8610 
NIBLK         88 
IBLKFAC        196 
COMPONENTS 

SHIPID 
VOYAGENUMBER 

CLUSTERED      0 
INDEX          1 

MCOLUMN           SHIPID<-VOYAGENUMBER«-LEGNUMBER !tl BYTES! 
COLCARD        17220 
NIBLK         108 
IBLKFAC        160 
COMPONENTS 

SHIPID 
VOYAGENUMBER 
LEGNUMBER 

CLUSTERED      0 
INDEX         1 

MCOLUMN 
COLCARD 

SHTPTD«-VOYAGENUMBER«-SOURCESTOP 111 BYTES 
17220 
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NIBLK          108 
IBLKFAC        160 
COMPONENTS 

SHIPID 
VOYAGENUMBER 
SOURCESTOP 

CLUSTERED      0 
INDEX          1 

HCOLUMN           SHIPID«-VOYAGENUMBER«-DESTINATIONSTOP 111 
COLCARD        17220 
NIBLK          108 
IBLKFAC        160 
COMPONENTS 

SHIPID 
VOYAGENUMBER 
DESTINATIONSTOP 

CLUSTERED      0 
INDEX          1 

BYTES! 

kTION 
RELCARD 
NBLOCKS 
BLKFAC 

STOPS          152 BYTES 1 
25830 
528 
49 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPID        15 BYTES! 
2870 
101 
256 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

VOYAGENUMBER    13 BYTES! 
350 
81 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

STOPNUMBER     13 BYTES! 
11 
81 
320 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

PORTNAME       118 BYTES! 
100 
233 
111 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

ARRIVALDATE     !6 BYTES! 
365             1KEEPS THE RECORD FOR 1 
112 
232 
0 
1 

YEAR! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

ARRIVALTIME     !4 BYTES! 
1000           1< 24 X 60! 
91 
284 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

DEPARTUREDATE   16 BYTES! 
365 
112 
232 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

DFPARTURETIME   14 BYTES! 
1000            !< 24 X 60! 
91 
284 
0 
1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

DOCKNUMBER     !3 BYTES! 
15 
81 
320 
0 
1 

MCOLUMN 
COICARD 
NIBLK 

SIIIPID«-VOYAGENUMBER !8 BYTES! 
8610 
132 
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IBLKFAC 196 
COMPONENTS 

SHIPID 
VOYAGENUHBER 

CLUSTERED 0 
INDEX 1 

MCOLUMN SHIPID<-VOYAGENUMBER«-STOPNUMBER Hl BYTES! 
COLCARD 25830 
NIBLK 162 
IBLKFAC 160 
COMPONENTS 

SHIPID 
VOYAGENUMBER 
STOPNUMBER 

CLUSTERED 0 
INDEX 1 

MCOLUMN PORTNAME«-DOCKNUMBER    121 BYTES! 
COLCARD 350 
NIBLK 264 
IBLKFAC 98 
COMPONENTS 

PORTNAME 
DOCKNUMBER 

CLUSTERED 0 
INDEX 1 

RELATION DOCKS !33 BYTES! 
RELCARD 500 15 DOCKS/PORT! 
NBLOCKS 7 
BLKFAC 77 

COLUMN PORTNAME !18 BYTES! 
COLCARD 100 
NI8LK 5 
IBLKFAC 111 
CLUSTERED 0 
INDEX 1 

COLUMN DOCKNUMBER !3 BYTES! 
COLCARD 15 !MAX DOCKNUMBER USED! 
NIBLK 2 
IBLKFAC 320 
CLUSTERED 0 
INDEX 1 

COLUMN SHIPID !5 BYTES! 
COLCARD 320 
NIBLK 2 
IBLKFAC 256 
CLUSTERED 0 
INDEX 1 

COLUMN MAXDRAFT !3 BYTES! 
COLCARD 200 
NIBLK 2 
IBLKFAC 320 
CLUSTERED 0 
INDEX 1 

COLUMN MAXLENGTH 13 BYTES! 
COLCARD 200 
NIBLK 2 
IBLKFAC 320 
CLUSTERED 0 
INDEX 1 

COLUMN OCCUPIEDORNOTOCCUPIED 11 BYTE! 
COLCARD 2 
NIBLK 2 
IBLKFAC 426 
CLUSTERED 0 
INDEX 1 

MCOLUMN PORTNAME«-DOCKNUMBER 121 BYTES! 
COLCARD 500 
NIBLK 5 
IBLKFAC 98 
COMPONENTS 

PORTNAME 
DOCKNUMBER 

CLUSTERED 0 
INDEX 1 

RELATION 
RELCARD 
NBLOCKS 

PORTS 
100 
2 

143 BYTES! 
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BLKFAC 53 . 

ms 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

PORTNAME 
100 
1 
111 
0 
1 

118 BYTES 1 

» 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COUNTRY 
70 
1 
365 
0 
1 

12 BYTES 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LATITUDE 
100 
1 
284 
0 
1 

14 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

NORS 
2 
1 
426 
0 
1 

!l BYTE! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LONGITUDE 
100 
1 
284 
0 
1 

14 BYTES 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

EORW 
2 
1 
426 
0 
1 

11 BYTE! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

MAXDRAFT 
70 
1 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
ClUSTERED 
INDEX 

NUMBEROFDOCKS 
15 
1 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

MAXLENGTH 
70 
1 
320 
0 
1 

!3 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

NUMBEROFSHIPSATPORT !3 BYTES! 
15 
1 
320 
0 
1 

RELATION 
REICARD 
NBIOCKS 
Bl KFAC 

WAREHOUSES 
1000 
19 
54 

!47 BYTES! 
!10 WAREHOUSES/PORT! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

PORTNAME 
100 
10 
111 
0 
1 

!18 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

WAREHOUSENUMBER 
20 
4 
284 
0 
1 

!4 BYTES! 
!MAX 20 WAREHOUSES/P 

COLUMN CARGOCLASS !6 BYTES! 
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COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

25 
S 
232 
0 
1 

USEDORUNUSED   II BYTEI 
2 
3 
426 
0 
1 

QUANTITY!«IGHT 16 BYTES 1 
100 
5 
213 
0 
1 

QUANTITYVOLUME 16 BYTES I 
100 
S 
213 
0 
1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIRLK 
IBLKFAC 
CLUSTERED 
INDEX 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LOADEDUNLOADEDCARGOES !30 BYTES! 
77490 !3 CARGOES/STOP I 
912 
85 

SHIPID 
2870 
303 
256 
0 
1 

VOYAGENUMBER 
350 
243 
320 
0 
1 

STOPNUMBER 
11 
243 
320 
0 
1 

CARGOCLASS 
25 
335 
232 
0 
1 

LORU 
2 
182 
426 
0 
1 

QTYWGHT 
10500 
335 
232 
0 
1 

QTYVOL 
9400 
335 
232 
0 
1 

15 BYTES I 

!3 BYTES! 

13 BYTES! 

!6 BYTES! 

II BYTEI 

16 BYTES I 

16 BYTES! 

MCOLUMN 
COLCARD 
NIBLK 
IBLKFAC 
COMPONENTS 

SHIPID 
VOYAGENUMBER 
STOPNUMBER 

CLUSTERED      0 
INDEX 1 

SHIPID«-VOYAGENUMBER«-STOPNUMBER 111 BYTES! 
25830 
485 
160 
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RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

CARGOESONBOARD 
12000 
137 
SB 

!29 BYTES 1 
15 CARGOES/LEG FOR CURRE 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPID 
2870 
47 
256 
0 
1 

15 BYTES 1 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

VOYAGENUMBER 
350 
38 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LEGNUMBER 
10 
38 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

CARGOCLASS 
25 
52 
232 
0 
1 

16 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

QUANTITYWEIGHT 
4500 
52 
232 
0 
1 

16 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

QUANTITYVOLUME 
3700 
52 
232 
0 
1 

16 BYTES! 

MCOLUMN            SHIPID<-VOYAGENUMBER<-LEGNUMBER 111 BYTES 1 
COLCARD        2400 
NIBLK          75 
IBLKFAC        160 
COMPONENTS 

SHIPID 
VOYAGENUMBER 
LEGNUMBER 

CLUSTERED      0 
INDEX          1 

RELATION 
RELCARD 
NBLOCKS 
BLKFAC 

TRACKS 
4800 
65 
37 

168 BYTES! 
IONLY CURRENT VOYAGE! 
!AVG 2 REPORT/LEG! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

SHIPID 
1200 
10 
256 
0 
1 

15 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

VOYAGENUMBER 
75 
8 
320 
0 
1 

!3 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 
INDEX 

LEGNUMBER 
10 
8 
320 
0 
1 

13 BYTES! 

COLUMN 
COLCARD 
NIBLK 
IBLKFAC 
CLUSTERED 

DATE 
90 
11 
232 
0 

16 BYTES! 
!MAX 90 DAYS/LEG! 
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INDEX' 

COLUMN TIME 14 BYTESI 
COLCARD 1060 
NIBLK 9 
IBLKFAC 284 
CLUSTERED 0 
INDEX 1 

COLUMN COURSE 13 BYTESI 
COLCARD 951 
NIBLK 8 
IBLKFAC 320 
CLUSTERED 0 
INDEX 1 

COLUMN SPEED 13 BYTESI 
COLCARD 150 
NIBLK 8 
IBLKFAC 320 
CLUSTERED 0 
INDEX 1 

COLUMN LATITUDE 14 BYTESI 
COLCARD 2400 
NIBLK 9 
IBLKFAC 284 
CLUSTERED 0 
INDEX 1 

COLUMN NORS 11 BYTE! 
COLCARD 2 
NIBLK 6 
IBLKFAC 426 
CLUSTERED 0 
INDEX 1 

COLUMN LONGITUDE 15 BYTESI 
COLCARD 2400 
NIBLK 11 
IBLKFAC 232 
CLUSTERED 0 
INDEX 1 

COLUMN EORW 11 BYTEI 
COLCARD 2 
NIBLK 6 
IBLKFAC 426 
CLUSTERED 0 
INDEX 1 

COLUMN REPORTER 130 BYTES! 
COLCARD 100 
NIBLK 33 
IBLKFAC 73 
CLUSTERED 0 
INDEX 1 

MCOLUMN SHIPID<-VOYAGENUMBER«-LEGNUMBER !11 BYTES! 
COLCARD 2000 
NIBLK 15 
IBLKFAC 160 
COMPONENTS 

SHIPID 
VOYAGENUMBER 
LEGNUMBER 

CLUSTERED 0 
INDEX 1 

CONNECTIONS 
• 

CONNECTION III 
REL1 FUELTYPES 
COL1 FUELTYPE 
JSEL1 t.O 
RELN SHIPCLASSES 
COIN FUELTYPE 
JSELN 1.0 

CONNECTION 121 
REL1 SHIPTYPES 
COL1 SHIPTYPE 
JSEL1 1.0 
RELN SHIPCLASSES 
COLN SHIPTYPE 
JSELN 1.0 

CONNECTION 131 
REL1 SHIPCLASSES 
COL1 SHIPCLASS 
JSEL1 1.0 
RELN SHIPCLASSCARGOCLASS 
COLN SHIPCLASS 
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JSELN 1.0 

CONNECTION 141 
REL1 SHIPCLASSES 
C0L1 SHIPCLASS 
JSEL1 1.0 
RELN SHIPS 
COLN SHIPCLASS 
JSELN 1.0 

CONNECTION ISI 
REL1 COUNTRIES 
COL1 COUNTRYABB 
JSEL1 0.2137 
"RELN SHIPS 
COLN COUNTRYOFREGISTRY 
JSELN 1.0 

CONNECTION 16! 
REL1 COUNTRIES 
COL1 COUNTRYABB 
JSEL1 0.2992 
RELN PORTS 
COLN COUNTRY 
JSELN 1.0 

CONNECTION 171 
REL1 CARGOCLASSES 
COL1 CARGOCLASS 
JSEL1 1.0 
RELN SHIPCLASSCARGOCLASS 
COLN CARGOCLASS 
JSELN 1.0 

CONNECTION 181 
REL1 SHIPS 
COL1 SHIPID 
JSEL1 1.0 
RELN VOYAGES 
COLN SHIPID 
JSELN 1.0 

CONNECTION 19! 
REL1 SHIPS 
COL1 SHIPID 
JSEL1 0.1045 
RELN DOCKS 
COLN SHIPID 
JSELN 1.0 

CONNECTION 110! 
RELl PORTS 
C0L1 PORTNAME 
JSEL1 1.0 
RELN DOCKS 
COLN PORTNAHE 
JSELN 1.0 

CONNECTION 111! 
REL1 PORTS 
COL1 PORTNAHE 
JSFL1 1.0 
RELN WAREHOUSES 
COLN PORTNAME 
JSELN 1.0 

CONNECTION 112! 
REL1 CARGOCLASSES 
COL1 CARGOCLASS 
JSEL1 1.0 
RELN WAREHOUSES 
COLN CARGOCLASS 
JSELN 1.0 

CONNECTION 1131 
REL1 VOYAGES 
COl 1 SHIPID<-VOYAGENUMBER 
JSEL1 1.0 
RELN LEGS 
COLN SHIPID<-VOYAGENUMBER 
JSELN 1.0 

CONNECTION 114! 
REL1 VOYAGES 
COL1 SHIPID<-VOYAGENUMBER 
JSEL1 1.0 
RELN STOPS 
COLN SHIPID«-VOYAGENUMBER 
JSELN 1.0 

CONNECTION 115! 
REL1 DOCKS 
C0L1 P0RTNAHE<-DOCKNUMBER 
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JSEL1 0.7 
RELN STOPS 
COLN PORTNAMEHJOCKNUHBER 
JSELN 1.0 

CONNECTION 1161 
REL1 PORTS 
C0L1 PORTNAHE 
JSEL1 1.0 
RELN STOPS 
COLN PORTNAHE 
JSELN 1.0 

CONNECTION 117! 
REL1 CARGOCLASSES 
COL1 CARGOCLASS 
JSEL1 1.0 
RELN CARGOESONBOARO 
COLN CARGOCLASS 
JSELN 1.0 

CONNECTION ! 181 
REL1 CARGOCLASSES 
COL1 CARGOCLASS 
JSEL1 1.0 
RELN LOADEDUNLOADEDCARGOES 
COLN CARGOCLASS 
JSELN 1.0 

CONNECTION 1191 
REL1 STOPS 
COL1 SHIPID*-VOYAGENUMBER«-STOPNUMBER 
JSEL1 0.6667 
RELN LEGS 
COLN SHIPID<-VOYAGENUMBER<-S0URCEST0P 
JSELN 1.0 

CONNECTION 120! 
REL1 STOPS 
COL1 SHIPID«-VOYAGENUMBER*-STOPNUMBER 
JSEL1 0.6667 
RELN LEGS 
COLN SHIPID«-VOYAGENUMBER«-D£STINATIONSTOP 
JSELN 1.0 

CONNECTION 121! 
REL1 STOPS 
COL1 SHIPID«-VOYAGENUMBER«-STOPNUMBER 
JSEL1 1.0 
RELN LOADEDUNLOADEDCARGOES 
COLN SHIPID«-VOYAGENUMBER<-STOPNUMBER 
JSELN 1.0 

CONNECTION !22l 
REL1 LEGS 
COL1 SHIPID<-VOYAGENUHBERvLEGNUHBER 
JSEL1 0.2788 
RELN TRACKS 
COLN SHIPID-VOYAGENUMBER«-LEGNUMBER 
JSELN 1.0 

CONNECTION 123! 
REL1 LEGS 
COL1 SHIPID-VOYAGENUMBER*-LEGNUMBER 
JSEL1 0.2788 
RELN CARGOESONBOARO 
COLN SHIPID«-VOYAGENUMBER<-LEGNUHBER 
JSELN 1.0 

USAGE 
TRANSACTION 1 

TYPE   JQ     FREQ   1000    10000  Deleted 
1SH0W THE PRICE OF THE FUEL FOR THE SHIPTYPE "TIGER"! 
SELECT  SIITPCI ASSFS.SHIPCLASS. SHIPCLASSES . FUELTYPE , FUELTYPES . PRICE 
FROM    SHTPCLASSFS(0.12). FUELTYPES(0.33] 
WHERE   SHIPCLASSES.FUE1 TYPE = FUELTYPES.FUELTYPE AND 

SHIPCLASSES.SHIPCLASS - "TIGER" 

TRANSACTION 2 
TYPE   JQ     FREQ   1000   10000  Deleted 
1SH0W ALL THE ATTRIBUTES AND DESCRIPTION OF THE SHIPTYPE "LION"! 
SELECT SHIPCLASSES.'. SHIPTYPES.DESCRIPTION 
FROM   SHIPCI.ASSES(l), SHIPTYPES(l) 
WHERE  SHIPCLASSES.SHIPTYPE = SHIPTYPES.SHIPTYPE AND 

SHIPCLASSES.SHIPCLASS = "LION" 

TRANSACTION 3 
TYPE   JQ     FREQ   1000   10000  Deleted 
!SHOW SHTPCLASSES THAT CAN CARRY MORE THAN 1000 M3'S LUHBER AND 
THEIR TYPES, VOLUME CAPACITIES AND WEIGHT CAPACITIES! 
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SELECT 

FROM 
WHERE 

SHTPC'LASSES.SHIPCLASS, SHIPCIASSES.SHIPTYPE       „„„„„,„„,. 
SHIPCLASSCARGOCLASS.CARGOCLASS,SHIPCLASSCARGOCLASS.MAXVOLUME, 
SHIPCLASSCARGOCLASS.MAXWEIGHT 
SHIPCLASSESf0.12), SHIPCLASSCARGOCLASS(l) 
SHIPCLASSES.SHIPCLASS = SHIPCLASSCARGOCLASS.SHIPCLASS AND 
SHIPCLASSCARGOCLASS.CARGOCLASS = "LUMBER" AND 
SHIPCLASSCARGOCLASS.MAXVOLUME > 1000 

FROM 
WHERE 

TRANSACTION 4 .»„„,«... 
TYPE   JO     FREQ   100    100    Deleted 
'FIND ALL THE TANKERS IN REGION X, THEIR POSITIONS AND COUNTRIES OF 
REGISTRY! 

SELECT  SHIPCIASSES.SHIPTYPE, SHIPS.» 
SHIPCLASSES(0.12), SHIPS(l) 
SHIPCLASSES.SHIPCLASS « SHIPS.SHIPCLASS AND 
SHIPCIASSES.SHIPTYPE = "TANKER" AND 
SHIPS.LATITUDE > 10.0  AND 
SHIPS.LATITUDE < 20.0  AND 
SHIPS.NORS = "N"       AND 
SHIPS.LONGITUDE > 40.0 AND 
SHIPS.LONGITUDE < 60.0 AND 
SHIPS.EORW = "W" 

TRANSACTION 5 „ , 
TYPE   JQ     FRFQ   1000   10000  Deleted 
ISHOW THE COUNTRY OF REGISTRY OF "PACIFIC<-PRINCESS" I 
SELECT  SHIPS.SHIPNAME, COUNTRIES.COUNTRYNAME 
FROM    SHIPS(0.29), COUNTRIES(0.78) 
WHERE   SHIPS.COUNtRYOFREGISTRY = COUNTRIES.COUNTRYABB AND 

SHIPS.SHIPNAME = "PACIFIC«-PRINCESS" 

TRANSACTION 6 _n„ 
TYPE   JQ     FREQ   200    20000  Deleted 
ISHOW ALL THE ATTRIBUTES AND COUNTRYNAME OF PORT 
SELECT  PORTS.*. COUNTRIES.COUNTRYNAME 
FROM    PORTS(l), COUNTRIES(0.78) 
WHERE   PORTS.COUNTRY = COUNTRIES.COUNTRYABB AND 

PORTS.PORTNAME = "SANFRANCISCO" 

'SANFRANCISCO"! 

VOLUME 

TRANSACTION 7   
TYPE   JQ     FREQ   100    10000  Deleted 
'SHOW THE SHIPCLASSFS THAT CAN CARRY "LUMBER", THEIR WEIGHT, 
'CAPACITIES FOR "IUMBER" AND WUNIT, VUNIT OF "LUMBER"! 
SELECT  CARGOCIASSFS.CARGOCLASS, CARGOCLASSES.WUNIT.CARGOCLASSES.VUNIT. 

SHIPCLASSCARGOCLASS.SHIPCLASS, SHIPCLASSCARGOCLASS.MAXVOLUME. 
SHIPCLASSCARGOCLASS.MAXWEIGHT 

FROM    CARGOCLASSES(l). SHIPCLASSCARGOCLASS(1)     „„„,„,,„,„„ 
WHERE   CARGOCIASSFS.CARGOCLASS = SHIPCLASSCARGOCLASS.CARGOCLASS AND 

SHIPCLASSCARGOCLASS.CARGOCLASS = "LUMBER" 

TRANSACTION 8 „ , 
TYPE   JQ     FREQ   1000   1000   Deleted 
!SHOW THE INFORMATION ABOUT ALL THE SHIPS CHARTERED BY 

SELFCT  VOYAGES.CHARTERER, SHIPS.SHIPNAME, VOYAGES.VOYAGENUMBER, 
SHIPS.IRCS. SHI PS.COUNTRYOFREGISTRY 

FROM    VOYAGES(l). SHIPS(0.40) 
WHFRE   VOYAGES.SHIPID = SHIPS.SHIPID  AND 

VOYAGFS.CHARTERER = "ATLANTIC«-OIL«-CO" 

TRANSACTION 9     „ , * ., 
TYPE   JQ     FRFQ   1000   10000  Deleted 
ISHOW THE NAMF OF THE SHIP ANCHORED AT SANFRANCISCO DOCK # 7! 
SELECT  DOCKS.PORTNAME, DOCKS.DOCKNUMBER, SHIPS.SHIPNAME 
FROM    DOCKS(0.79), SHIPS(0.32) 
WHFRE   DOCKS.SHIPID = SHIPS.SHIPID  AND 

DOCKS. PORTNAME*-DOCKNUMBER = "SANFRANCISCO" 7 

TRANSACTION 10   
TYPE   JQ     FREQ   100    30000  Deleted 
ISHOW ALL THE ATTRIBUTES OF SANFRANCISCO PORT AND ITS DOCKS! 
SELECT  PORTS.*, DOCKS.* 
FROM    PORTS(l), DOCKS(l) 
WHFRF   PORTS.PORTNAME - DOCKS.PORTNAME  AND 

PORTS.PORTNAME = "SANFRANCISCO" 

TRANSACTION 11 rnnn 
TYPF   JQ     FREQ   500    5000   Deleted 
ISHOW THF NAMFS OF THE PORTS IN CANADA THAT CAN STORE 
SFIFCT  PORTS.PORTNAME 

PORTS(0.42), WAREH0USES(0.38) 
PORTS.PORTNAMF = WAREHOUSES.PORTNAME  AND 
PORTS.COUNTRY = "CANADA"  AND 
WAREHOUSES.CARGOCLASS - "EXPLOSIVES" 

•EXPLOSIVES"! 

FROM 
WHERE 

TRANSACTION 12 „ , 
TYPE    JQ      FREQ    200     2000    Deleted 
'SHOW THE ATTRIRUTFS OF ALI THE WARFHOUSFS OF PORT "SANFRANCISCO" AND 
'THE WEIGHT AND VOLUME UNITS OF CARGOCLASSES THEY CAN STORE! 
SELFCT  WAREHOUSES.*. CARGOCLASSES.WUNIT, CARGOCLASSES.VUNIT 
FROM    WARFHOUSFS(l). CARGOCLASSFSI1) 
WHERE  WARFHOUSFS.CARGOCl ASS = CARGOClASSES.CARGOClASS AND 

WAREHOUSES.PORTNAME = "SANFRANCISCO" 
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TRANSACTION 13 
TYPE   JQ     FREQ   10000  1000   Deleted 
ISHOW THE RECENT VOYAGES OF SHIP 10105. THEIR LEGS AND CHARTERERS! 
SELECT  VOYAGES.SHIPID, VOYAGES.VOYAGENUMBER.VOYAGES.CHARTERER, 

LEGS.SOURCESTOP, LEGS.DESTINATIONSTOP 
FROM   VOYAGES(l). LEGS(l) 
WHERE  VOYAGES. SHI PID<-VOYAGENUMBER = LEGS .SHIPID«-VOYAGENUMBER AND 

VOYAGES.SHIPID = 10105 

TRANSACTION 14 
TYPE   JQ     FREQ   10000  1000   Deleted 
ISHOW THE RECENT VOYAGFS OF SHIP 10105 AND THEIR STOPSI 
SELECT VOYAGES.SHIPID. VOYAGES.VOYAGENUMBER, VOYAGES.CHARTERER. 

STOPS.« 
FROM   VOYAGES(l), STOPS(l) 
WHERE   VOYAGES.SHIPIDM/OYAGENUMBER = STOPS .SHIPID^VOYAGENUHBER AND 

VOYAGES.SHIPID = 10105 

TRANSACTION 15 
TYPE   JQ     FREQ   500    5000   Deleted 
ISHOW THE ATTRIBUTES OF THE DOCK AT WHICH SHIP 10105 WILL BE ANCHORED 
AT THE SECOND STOP ON VOYAGE 511 

SELECT DOCKS.« 
FROM   ST0PS(0.40), OOCKS(l) 
WHERE  STOPS. PORTNAME-DOCKNUMBER = DOCKS. PORTNAME.-DOCKNUMBER AND 

STOPS.SHIPID«-VOYAGENUMBER<-STOPNUMBER = 10105 51 2 

TRANSACTION 16 
TYPE   JQ     FREQ   10000   10000  Deleted 
ISHOW THE NAME OF THE PORT AND ITS COUNTRYNAME AT WHICH SHIP 10105 
WILL BE ANCHORED AT THE SECOND STOP ON VOYAGE 511 

SELECT  PORTS.PORTNAME, PORTS-COUNTRY 
FROM   ST0PS(0.35), P0RTS(0.47) 
WHERE  STOPS.PORTNAME = PORTS.PORTNAME AND 

STOPS.SHIPID<-VOYAGENUMBER*-STOPNUMBER = 10105 51 2 

TRANSACTION 17 
TYPE   JQ     FREQ   1000   10000  Deleted 
ISHOW THE CARGOES ON BOARD OF SHIP 10105 AND THEIR WEIGHT, VOLUME, AND 
UNITS ON LEG 2 OF VOYAGE 51! 

SELECT  CARGOESONBOARD.*, CARGOCLASSES.WUNIT, CARGOCLASSES.VUNIT 
FROM    CARGOESONBOARD(l), CARGOCLASSESf1) 
WHERE   CARGOESONBOARD.CARGOCLASS = CARGOCLASSES.CARGOCLASS AND 

CARGOESONBOARD.SHIPID<-VOYAGENUMBER«-LEGNUMBER =■ 10105 51 2 

TRANSACTION 18 
TYPE   JQ     FREQ   1000    10000  Deleted 
1SHOWS THE CARGOES, THFIR WEIGHTS, VOLUMES, AND UNITS THAT SHIP 10105 
UNLOADED AT THE SECOND STOP ON VOYAGE 51! 

SELECT  LOADEDUNLOADEDCARGOES.', CARGOCLASSES.WUNIT, CARGOCLASSES.VUNIT 
FROM    LOADEDUNLOADEDCARGOES(l), CARGOCLASSES(1) 
WHERE   LOADEDUNLOADEDCARGOES.CARGOCLASS = CARGOCLASSES.CARGOCLASS AND 

LOADEDUNLOADEDCARGOES. SHI PID«-VOYAGENUMBER<-STOPNUMBER - 
10105 51 2 AND 

LOADEDUNLOADEDCARGOES.LORU = "L" 

TRANSACTION 19 
TYPE   JQ     FREQ   100000  10000  Deleted 
ISHOW THE SOURCE STOP'S PORTNAME OF LEG 2 OF VOYAGE 51 OF SHIP 101051 
SELECT  LEGS.SHIPID, LEGS.VOYAGENUMBER, LEGS.LEGNUMBER, STOPS.PORTNAME 
FROM    LFGS(0.82), ST0PS(0.56) 
WHERE   LEGS.SHIPID<-VOYAGENUMBER<-SOURCESTOP = 

STOPS.SHIPID<-VOYAGFNUMBER<-STOPNUMBER AND 
LEGS.SHIPID<-VOYAGENUMBER<-LEGNUMBER = 10105 51 2 

TRANSACTION 20 
TYPE   JQ     FREQ   100000  10000  Deleted 
ISHOW THE DESTINATION STOP'S PORTNAME OF LEG 2 OF VOYAGE 51 OF 
SHIP 10105! 

SELECT  LEGS.SHIPID, LEGS.VOYAGENUMBER, LEGS.LEGNUMBER, STOPS.PORTNAME 
FROM    LEGS(0.82), ST0PS(0.56) 
WHERE   LEGS.SHIPID«-VOYAGFNUMBER<-DESTINATIONSTOP = 

STOPS. SHIPID<-VOYAGENUMBER«-STOPNUMBER AND 
LEGS.SHIPID<-VOYAGENUMBER«-LEGNUMBER = 10105 51 2 

TRANSACTION 21 
TYPE   JQ     FREQ   200000  2000   Deleted 
ISHOW AIL THE CARGOES SHIP 10105 LOADED/UNLOADED AT EACH STOP ON 
VOYAGE 51! 

SELECT  STOPS.SHIPID, STOPS.VOYAGENUMBER, STOPS.STOPNUMBER, 
STOPS.PORTNAME, LOADEDUNLOADEDCARGOES.• 

FROM    ST0PS(0.56), l.OADEDUNI OADEDCARGOESf 1) 
WHERE   STOPS. SHIPID-VOYAGENUMBER«-STOPNUMBER = 

LOADEDUNLOADEDCARGOES. SHI PID*-VOYAGENUMBER<-STOPNUMBER  AND 
STOPS.SHIPID«-VOYAGENUMBER = 10105 51 

TRANSACTION 22 
TYPE   JQ     FREQ   5000   5000   Deleted 
ISHOW THE IFGS AND THEIR TRACK INFORMATION OF SHIP 10105! 
SELECT  LEGS.SHIPID, LEGS.SOURCESTOP, LEGS.DESTINATIONSTOP, TRACKS.» 
FROM    LFGS(l). TRACKS 1) 
WHERE   LEGS.SHIPID«-VOYAGENUMBER<-LEGNUMBER » 
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TRACKS.SHIPID«-VOYAGENUMBER«-LEGNUMBER AND 
LEGS.SHIPID = 10105 

TRANSACTION 23 
TYPE   JQ     FREQ   100000 10000  Deleted 
1SHOW THE SOURCE STOP, DESTINATION STOP OF LEG 2 OF VOYAGE 51 OF 
SHIP 10105 AND CARGOES ON BOARD ON THAT LEG! 

SELECT  LEGS.SOURCFSTOP, LEGS.DESTINATIONSTOP. CARGOESONBOARD.• 
LEGS(l), CARGOESONBOARD(l) 
LFGS.SHIPID«-VOYAGENUMBFR<-LEGNUMBER = 

CARGOESONBOARD.SHIPID<-VOYAGENUMBER«-LEGNUMBER AND 
LEGS.SHIPID<-VOYAGENUMBER<-LEGNUMBER = 10105 51 2 

FROM 
WHERE 

TRANSACTION 104 
TYPE   JQ     FREQ   200    200    Deleted 
1SHOW THE NAME. TYPE. AND DEADWEIGHT OF SHIPS REGISTERED IN NETHERLANDS! 
SELECT SHIPS.COUNTRYOFREGISTRY, SHIPS.SHIPNAME, 

SHI PCL ASSES.SHIPTYPE, SHIPCLASSES.DEADWEIGHT 
FROM   SHIPS(0.32), SHIPCLASSES(0.21) 
WHERE  SHIPS.SHIPCLASS = SHIPCLASSFS.SHIPCLASS AND 

SHIPS.COUNTRYOFREGISTRY = "NT" 

TRANSACTION 108 
TYPE   JQ     FREQ   200    2000   Deleted 
1SH0W ALL THE SHIPS OWNED BY "ONASIS" AND THEIR VOYAGES AND CHARTERERS! 
SELECT  SHIPS.OWNER, SHIPS.SHIPNAME, 

VOYAGES.VOYAGENUMBER, VOYAGES.CHARTERER 
FROM   SHIPS(0.62), VOYAGES(l) 
WHERE   SHIPS.SHIPID = VOYAGES.SHIPID AND 

SHIPS.OWNER = "ONASIS" 

TRANSACTION 110 
TYPE   JQ     FREQ   100    1000   Deleted 
'FIND THE PORTS AND THEIR LOCATIONS THAT HAVE DOCKS MORE THAN 50 FT 
DEEP! 
SELECT  PORTS.PORTNAME, PORTS.COUNTRY, PORTS.LATITUDE, PORTS.NORS, 

PORTS.LATITUDE, PORTS.EORW, DOCKS.DOCKNUMBER, DOCKS.MAXLENGTH 
FROM 
WHERE 

PORTS(0.70), D0CKS(0.73)   ,   -A-...- /S0RTNAME AND PORTS.PORTNAME 
DOCKS.MAXDRAFT 

= DOCKS. 
> 50 

TRANSACTION 113 
TYPE    JQ     FREQ   1000    1000   Deleted 
1SHOW AIL THE VOYAGES AND THEIR LEGS THAT ARE CHARTERED BY 
"ATLANTIC<-OIL*-CO"! 

SELECT  VOYAGES.SHIPID, VOYAGES.VOYAGENUMBER, LEGS.» 
FROM   VOYAGES(l), LEGS(l) 
WHERF   VOYAGES. SHIPID<-VOYAGENUMBER = LEGS . SHIPID<-VOYAGENUMBER AND 

VOYAGES.CHARTERER = "ATLANTIC*-OIL*-CO" 

TRANSACTION 121 
TYPE   JQ     FREQ   100    10000  Deleted 
IFIND THE PORTS WHERE SHIP 10105 UNI OADED "LUMBER" ON VOYAGE 51, 
AND THE TIME THF SHIP ARRIVED AT THESE PORTS! 

SEIECT  STOPS.PORTNAME, STOPS.ARRIVAL DATE, STOPS.ARRIVALTIME 
FROM   STOPS(0.76). LOAOEDUNLOADEDCARGOESfO.37) 
WHERE   STOPS.SHIPID^VOYAGENUMBER<-STOPNUMBER = 

LOADFDUNI OADEDCARGOFS . SHIPID*-VOYAGENUMBER<-STOPNUMBER AND 
LOADFDUNIOADEDCARGOES.SHIPID = 10105 AND 
LOADFDUNIOAOFDCARGOES.VOYAGENUMBER = 51 AND 
LOADFDUNLOAOEDCARGOES.CARGOCLASS = "LUMBER" AND 
LOADEDUNLOADEDCARGOES.LORU « "U" 

TRANSACTION 122 
TYPE   JQ     FREQ   500    5000   Deleted 
IFIND THE DESTINATION, COURSE AND SPEED OF THE SHIP TRACKED BY 
THE SITE AT "PORTSMOUTH" AT 18:22 ON JUNE 22, 1982! 

SEIECT  LEGS.DESTINATIONSTOP, TRACKS.COURSE, TRACKS.SPEED 
FROM   TRACKS(0.25), LEGS(0.82) 
WHERE   LEGS.SHIPTD<-VOYAGENUMBER<-LEGNUMBER • 

TRACKS. SHIPID<-VOYAGENUMBER<-LEGNUMBER AND 
TRACKS.DATE = 062682 AND 
TRACKS.TIME = 1822   AND 
TRACKS.REPORTER = "PORTSMOUTH" 

TRANSACTION 201 
TYPE   SQ     FRFQ   100    10000  Deleted 
IFIND SHIPCIASSES OF TYPE "TRAWLER" AND THEIR DEADWEIGHT AND 
CRUISING SPEED! 

SELECT  SHIPCIASSES.SHIPCLASS, SHIPCLASSES.DEADWEIGHT, 
SHIPCLASSES.CRUISESPD 

FROM   SHIPCLASSES 
WHERE   SHIPCLASSES.SHIPTYPE = "TRAWLER" 

TRANSACTION 202 
TYPE   SQ     FREQ   200    20000  Deleted 
!FIND SHIPCLASSES AND THEIR TYPES WHOSE DEADWEIGHTS EXCEED 10000 TONS! 
SEIECT  SHIPCLASSES.SHIPCLASS, SHIPCLASSES.SHIPTYPES 
FROM   SHIPCLASSES 
WHERE   SHIPCLASSES.DEADWEIGHT > 10000 

TRANSACTION 203 
TYPE    SQ FREQ 5000 5000 Deleted 
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IFIND THE IRCS AND THE POSITION OF "QE2"! 
SELECT SHIPS.IRCS. SHIPS.LONGITUDE, SHIPS.EORW, SHIPS.LATITUDE. 

SHIPS.NORS 
FROH   SHIPS 
WHERE  SHIPS.SHIPNAHE = "QEZ" 

TRANSACTION 204 
TYPE   SQ     FREQ   100    10000  Deleted 
ISHOW ALL THE ATTRIBUTES OF PORT "ALEXANDRIA"I 
SELECT  PORTS.* 
FROM   PORTS 
WHERE   PORTS.PORTNAHE = "ALEXANDRIA" 

TRANSACTION 205 
TYPE   SQ     FREQ   100    10000  Deleted 
IFIND ALL THE PORTS IN "FRANCE"! 
SELECT  PORTS.PORTNAHE 
FROM    PORTS 
WHERE   PORTS.COUNTRY « "FRANCE" 

TRANSACTION 206 
TYPE   SQ     FREQ   100    10000  Deleted 
(DESCRIBE ALL THE ATTRIBUTES OF DOCKS IN HARSEILLES! 
SELECT DOCKS.» 
FROM    DOCKS 
WHERE  DOCKS.PORTNAME = "MARSEILLES" 

TRANSACTION 207 
TYPE   SQ     FREQ   5000   5000   Deleted 
ISHOW THE CARGOES, VOLUME CAPACITY AND WEIGHT CAPACITY OF WAREHOUSE 6 
OF PORT MARSEILLES! 

SELECT WAREHOUSES.CARGOCLASS, WAREHOUSES.QUANTITYWEIGHT, 
WAREHOUSES.QUANTITYVOLUME 

FROM    WAREHOUSES 
WHERE   WAREHOUSES.PORTNAME = "MARSEILLES" AND 

WAREHOUSES.WAREHOUSENUMBER = 5 

TRANSACTION 208 
TYPE    SQ      FREQ    40000   20000   Deleted 
ISHOW ALL THE ATTRIBUTES OF THE STOPS THE SHIP 10105 HADE ON VOYAGE 511 
SELECT  • 
FROM    STOPS 
WHERE   STOPS.SHIPID = 10105 AND 

STOPS.VOYAGENUMBER = 51 

TRANSACTION 209 
TYPE    SQ      FREQ    24000   24000   Deleted 
!FINO THE CHARTERER OF VOYAGE 51 OF THE SHIP 10105! 
SELECT  VOYAGE.CHARTERER 
FROM    VOYAGES 
WHERE   VOYAGES.SHIPID<-VOYAGENUMBER = 10105 51 

IFOR TRANSACTIONS OF TYPE AQ, IF AGGREGATION OPERATORS COUNT,AVG,SUM ARE USED, 
THE PROJECTION FACTOR MUST BE 1, SINCE DUPLICATES SHOULD NOT BE REHOVED. 
IF MIN, HAX ARF USED, THE PROJECTION FACTOR DEPENDS ON THE SELECTED FIELDS 
AND THE FIELDS IN THE GROUP BY CLAUSE.! 

TRANSACTION 301 
TYPE   AQ     FREQ   100    100    Deleted 
ISHOW THE OWNERS WHO OWN MORE THAN 10 SHIPS AND HOW MANY SHIPS 
THEY OWN! 

SELECT  SHIPS.OWNER, COUNTf») 
FROM    SHIPS 
GROUP BY SHIPS.OWNER 
HAVING  COUNT(») > 10 

TRANSACTION 302 
TYPE   AQ     FREQ   100    1000   Deleted 
!FIND THE AVERAGE MAXDRAFT OVER AIL DOCKS OF EACH PORTI 
SELECT  DOCKS.PORTNAME, AVG(DOf>£ MAXDRAFT) 
FROM    DOCKS 
GROUP BY DOCKS.PORTNAME 

TRANSACTION 303 
TYPE   AQ     FREQ   100    100    Deleted 
ISHOW HOW MANY VOYAGES FACH CHARTERER CHARTERED FOR 1 YEAR! 
SEI.FCT  VOYAGFS.CHARTERFR, COUNT(») 
FROM    VOYAGFS 
GROUP BY VOYAGES.CHARTERER 

TRANSACTION 304 
TYPE   AQ     FREQ   200    20     Deleted 
ISHOW HOW MANY SHIPS USED EACH PORT FROM JAN 1, 1982 TO JUNE 30, 19821 
SELECT STOPS.PORTNAME, COUNTf») 
FROM    STOPS 
WHERE   STOPS.ARRIVAIDATE > 010181 AND 

STOPS.ARRIVALOATE < 063082 
GROUP BY STOPS.PORTNAME 

TRANSACTION 305 
TYPE   AQ     FREQ   1000   10000  Deleted 
ISHOW THE TOTAL WFIGHT AND VOLUME OF CARGOES ON BOARD OF SHIP 10105 
DURING THE SECOND LEG OF VOYAGE 51! 
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SELECT SUM(CARGOESONBOARD.QUANTITYWEIGHT), 
SUM(CARGOESONBOARD.QUANTITYVOLUME) 

FROM    CARGOESONBOARD   
WHERE  CARGOESONBOARD.SHIPID«-VOYAGENUMBER«-LEGNUMBER - 10105 51 2 

TRANSACTION 401 
TYPE   INS    FREQ   0.1    10000  10000 
INSERT  INTO   FUELTYPES: 

<"OIL<-C", 30, "GALLON") 

TRANSACTION 402 
TYPE   INS    FREQ   0.1    10000  10000 
INSERT  INTO   SHIPTYPES: 

<"TRAWLER", "A«-FISHING«-VESSEL«-WHICH<-USES«-A<-TRAWLNET"> 

TRANSACTION 403 
TYPE   INS    FREQ   10     10000  10000 
INSERT  INTO    SHIPCLASSES: 

<"TANKER", "SX«-7", "OTHER«-ATTRIBUTES"> 

TRANSACTION 404 
TYPE   SD     FREQ   10     10000  10000 
DELETE  SHIPCLASSES 
WHERE  SHIPCLASSES.SHIPCLASS = "DRAGON- 

TRANSACTION 405 
TYPE    INS     FREQ    100     10000   10000 
INSERT  INTO    SHIPCLASSCARGOCLASS: 

<"SX<-7", "GRAIN", 20000, 10000> 

TRANSACTION 406 
TYPE   SD     FREQ   10     5000   5000 
DELETE  SHIPCLASSCARGOCLASS 
WHERE   SHIPCLASSCARGOCLASS.SHIPCLASS = "DRAGON" 

TRANSACTION 407 
TYPE   INS    FREQ   0.1    10000  10000 
INSERT  INTO    COUNTRIES: 

<"NC", "NEW<-COUNTRY", 1000000> 

TRANSACTION 408 
TYPE    INS     FREQ    5       5000    5000 
INSERT  INTO    PORTS: 

<"KUMI", "KR", "OTHER<-ATTRIBUTES"> 

TRANSACTION 409 
TYPE SD      FREQ    1       10000   10000 
DELETE PORTS 
WHERE PORTS. PORTNAME = "OLD»-PORT" 

TRANSACTION 410 
TYPE    INS     FREQ    10      10000   10000 
INSERT  INTO    CARGOCLASSES: 

<"NEW<-CARGOCLASS", "TON", "M3"> 

TRANSACTION 411 
TYPE   INS    FREQ   50     5000   5000 
INSERT  INTO    DOCKS: 

<0, "KUMI", 1, 50, 200, "N"> 

TRANSACTION 412 
TYPE    INS     FREQ    500     5000    5000 
INSERT  INTO   WAREHOUSES: 

<"BOSTON", 11. "OTHER«-ATTRIBUTES"> 

TRANSACTION 413 
TYPE    INS FREQ    8610    4300    4300 
INSERT  INTO VOYAGES: 

<10105, 320, "ATLANTIC«-OIL«-CO"> 

TRANSACTION 414 
TYPE   SD     FREQ   8610   4300   4300 
DELETE  VOYAGES 
WHERE   VOYAGES.SHIPID<-VOYAGENUMBER = 10105 320 

TRANSACTION 415 
TYPE    INS FREQ    25830   2583    2583 
INSERT  INTO STOPS: 

<10105, 320, 5, "OTHER«-ATTRIBUTES"> 

TRANSACTION 416 
TYPE   SD     FREQ   25830  2583   2583 
DELETE  STOPS 
WHERE  STOPS.SHIPID<-VOYAGENUMBER*-STOPNUMBER = 10105 320 5 

TRANSACTION 417 
TYPE    INS FREQ    77490   7749    7749 
INSERT  INTO LOADEDUNLOADEDCARGOES: 

<10105, 320, 5, "OTHER«-ATTRIBUTES"> 

TRANSACTION 418 
TYPE   SD     FREQ   77490  7749   7749 
DELETE  LOADEDUNLOADEDCARGOES 
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WHERE       LOADEDUNLOADEDCARGOES.SHIPID<-VOYAGENUMBER<-STOPNUMBER - 
10105  320   5 

TRANSACTION 419 
TYPE   INS FREQ   17220  2000   2000 
INSERT INTO LEGS: 

<10105, 320, 5, "OTHER«-ATTRIBUTES"> 

TRANSACTION 420 
TYPE   SD     FREQ   17220  2000   2000 
DELETE  LEGS 
WHERE   LEGS.SHIPID<-VOYAGENUMBER<-LEGNUMBER = 10105 32 5 

TRANSACTION 421 
TYPE   INS FREQ   12000  12000  12000 
INSERT  INTO CARG0ES0NBOARD: 

<10105. 320, 5, "OTHER<-ATTRIBUTES"> 

TRANSACTION 422 
TYPE   SD     FREQ   12000  12000  12000 
DELETE CARGOESONBOARD 
WHERE  CARGOESONBOARD.SHIPID<-VOYAGENUMBER«-LEGNUMBER = 10105 32 5 

TRANSACTION 423 
TYPE   INS FREQ   2400   2400   2400 
INSERT INTO TRACKS: 

<10105, 320, 5, "OTHER«-ATTRIBUTES"> 

TRANSACTION 424 
TYPE   SD     FREQ   2400   2400   2400 
DELETE  TRACKS 
WHERE  TRACKS.SHIPID<-VOYAGENUMBER«-LEGNUMBER * 10105 32 5 

TRANSACTION 501 
TYPE SU     FREQ   100    10000   10000 
UPDATE FUELTYPES 
SET FUELTYPES.PRICE = 140 
WHERE FUELTYPES.FUELTYPE = "GASOLINE" 

TRANSACTION 502 
TYPE SU     FREQ   500    500    500 
UPDATE SHIPS 
SET SHIPS.OWNER • "PACIFIC«-TRADING<-CO" , 
SET SHIPS.SHIPNAME = " TRADE<-WIND" 
WHERE SHIPS.SHIPID « 10105 

TRANSACTION 503 
TYPE   SU     FREQ   200    2000   2000 
UPDATE  SHIPS 
SET    SHIPS.COUNTRYOFREGISTRY = "SPAIN" 
WHERE  SHIPS.SHIPID = 10105 

TRANSACTION 504 
TYPE SU     FREQ   17220  17220  17220 
UPDATE SHIPS 
SET SHIPS.LATITUDE = 20.45. 
SET SHIPS.NORS = "N", 
SET SHIPS.LONGITUDE = 40.00, 
SET SHIPS.EORW = "W", 
SET SHIPS.DATEREPORTED « 063082, 
SET SHIPS.TIMEREPORTED « 1724, 
SET SHIPS.ATPORTORSEA - "S" 
WHERE SHIPS.SHIPID = 10105 

TRANSACTION 505 
TYPE   SU     FREQ   234    11700   11700 
UPDATE  COUNTRIES 
SET    COUNTRIES.POPULATION = 35000000 
WHERE   COUNTRIES.COUNTRYABB = "KR" 

TRANSACTION 506 
TYPE   SU     FREQ   10000  10000  10000 
UPDATE  PORTS 
SET    PORTS.NUMBEROFSHIPSATPORT « 15 
WHERE   PORTS.PORTNAME • "NEWORLEANS" 

TRANSACTION 507 
TYPE   SU     FREQ   15000  15000  15000 
UPDATE  DOCKS 
SET    DOCKS.SHIPID - 10105, 
SET    DOCKS. OCCUPIEDORNOTOCCUPIED =■ "0" 
WHERE  DOCKS. PORTNAME<-DOCKNUHBER = "NEW0RLEANS«-5" 

TRANSACTION 508 
TYPE   SU     FREQ   2000   20000  20000 
UPDATE WAREHOUSES 
SET    WAREHOUSES.USEDORUNUSEO = "Y" 
WHERE   WAREHOUSES.PORTNAME » "NEWORLEANS" AND 

WAREHOUSES.WAREHOUSENUMBER ■ 7 

TRANSACTION 509 
TYPE   SU     FREQ   25830  8600   8600 
UPDATE STOPS 
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SET STOPS.ARRIVALDATE - 063082. 
SET STOPS.ARRIVALTIME ="1545, 
SET STOPS.DOCKNUMBER = 7 
WHERE STOPS. SHIPID*-VOYAGENUMBER«-STOPNUMBER 10105 3203 

TRANSACTION 510 
TYPE   SU     FREQ   25830  8600   8600 
UPDATE  STOPS 
SET    STOPS.DEPARTUREDATE = 070582, 
SET    STOPS.OEPARTURETIME = 0542 
WHERE  STOPS. SHIPID«-VOYAGENUMBER«-STOPNUMBER 10105 320 3 

TRANSACTION 511 
TYPE   INS    FREQ   100 
INSERT  INTO   SHIPS: 

<"NEW<-SHIP", 10105, 

200 200 

"OTHER«-ATTRIBUTES"> 

TRANSACTION 512 
TYPE   SD     FREQ   50 
DELETE SHIPS 
WHERE  SHIPS.SHIPID = 10105 

20 20 

TRANSACTION 601 
TYPE   JU     FREQ   170    170    170 
UPDATE  STOPS 
SET    STOPS.PORTNAME = "LONDON" 
FROM   STOPS, LEGS(0.65) 
WHERE   STOPS.SHIPID<-VOYAGENUMBER<-STOPNUMBER > 

LEGS.SHIPID<-VOYAGENUMBER«-DESTINATIONSTOP 
LEGS.SHIPID*-VOYAGENUMBER*-LEGNUMBER = 10105 320 4 

AND 

TRANSACTION 602 
TYPE 
UPDATE 
SET 
FROM 
WHERE 

JU 
STOPS 
STOPS 
STOPS 

FREQ 100 100 100 

PORTNAME = "LISBON" 
LEGS(0.65) 

STOPS.SHIPID<-VOYÄGENUMBER«-STOPNUMBER =■ 
LEGS.SHIPID<-VOYAGENUMBER«-SOURCESTOP AND 

LEGS.SHIPID«-VOYAGENUMBER«-LEGNUMBER =■ 10105 320 5 
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SCHEMA7X        t      KBMS DATABASE 
110 ATTRIBUTES IN 16 RELATIONS 

SHIPTYPES 
 7F~ 

FUELTYPES 

Z2E1 
SHIPCLASSES 

/\ 

* SHIPCLASS-CARGOCLASS 

SHIPS 

_äi 

COUNTRIES 
^TK  

DOCKS 
/\ 

VOYAGES 

PORTS CARGOCLASSES 

WAREHOUSES 

STOPS 

LEGS 

TRACKS 

LOADEDUNLOADEDCARGOES 

CARGOESONBOARD 
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OPTIMAL ACCESS CONFIGURATION FOR SITUATION 70 

TOTALCOST = 5.415462017E+06 

RELATION  TRACKS 

SHIPID 
INDEX =  FALSE  CLUSTERED -  TRUE 

VOYAGENUMBER 
INDEX = FALSE CLUSTERED • FALSE 

LEGNUMBER 
INDEX = FALSE CLUSTERED - FALSE 

DATE 
INDEX = FALSE CLUSTERED - FALSE 

TIME 
INDEX • TRUE CLUSTERED - FALSE 

COURSE 
INDEX * FALSE CLUSTERED - FALSE 

SPEED 
INDEX = FALSE CLUSTERED = FALSE 

LATITUDE 
INDEX -  FALSE  CLUSTERED =  FALSE 

NORS 
INDEX =  FALSE  CLUSTERED =  FALSE 

LONGITUDE 
INDEX =  FALSE  CLUSTERED =  FALSE 

EORW 
INDEX =  FALSE  CLUSTERED =  FALSE 

REPORTER 
INDEX =  FALSE  CLUSTERED =  FALSE 

SHIPID<-VOYAGENUMBER«-LEGNUMBER 
INDEX =   TRUE  CLUSTERED -   TRUE 

RELATION  CARGOESONBOARD 

SHIPID 
INDEX =  FALSE  CLUSTERED -   TRUE 

VOYAGENUMBER 
INDEX =  FALSE  CLUSTERED -  FALSE 

LEGNUMBER 
INDEX =  FALSE  CLUSTERED =  FALSE 

CARGOCLASS 
INDEX -  FALSE  CLUSTERED =  FALSE 

QUANTITYWEIGHT 
INDEX =  FALSE  CLUSTERED -  FALSE 

QUANTITYVOLUME 
INDEX =  FALSE  CLUSTERED =  FALSE 

SHIPID«-VOYAGENUMBER<-LEGNUMBER 
INDEX =  TRUE  CLUSTERED =   TRUE 

RELATION  LOADEDUNLOADEDCARGOES 

SHIPID 
INDEX TRUE  CLUSTERED TRUE 

VOYAGENUMBER 
INDEX =  FALSE  CLUSTERED -  FALSE 

STOPNUMBER 
INDEX -  FALSE  CLUSTERED =  FALSE 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED =  FALSE 

LORU 
INDEX = FALSE CLUSTERED ■=  FALSE 

QTYWGHT 
INDEX = FALSE CLUSTERED «  FALSE 
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QTYVOL 
INDEX - FALSE  CLUSTERED FALSE 

SHIPID<-VOYAGENUMBER<-STOPNUMBER 
INDEX =  TRUE CLUSTERED =   TRUE 

RELATION  WAREHOUSES 

PORTNAME 
INDEX =   TRUE  CLUSTERED - TRUE 

WAREHOUSENUMBER 
INDEX =  FALSE  CLUSTERED = FALSE 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED =■  FALSE 

USEDORUNUSED 
INDEX *  FALSE  CLUSTERED =  FALSE 

QUANTITYWEIGHT 
INDEX =  FALSE  CLUSTERED ■  FALSE 

QUANTITYVOLUME 
INDEX =  FALSE  CLUSTERED »  FALSE 

RELATION   PORTS 

PORTNAME 
INDEX =   TRUE CLUSTERED = TRUE 

COUNTRY 
INDEX =  FALSE CLUSTERED ' FALSE 

LATITUDE 
INDEX =  FALSE CLUSTERED = FALSE 

NORS 
INDEX =  FALSE CLUSTERED • FALSE 

LONGITUDE 
INDEX »  FALSE CLUSTERED = FALSE 

EORW 
INDEX =  FALSE CLUSTERED - FALSE 

MAXDRAFT 
INDEX =  FALSE CLUSTERED - FALSE 

NUMBEROFDOCKS 
INDEX =  FALSE CLUSTERED = FALSE 

MAXLENGTH 
INDEX =  FALSE CLUSTERED - FALSE 

NUMBEROFSHIPSATPORT 
INDEX -  FALSE  CLUSTERED = FALSE 

PORTNAME 
INDEX =  TRUE CLUSTERED = TRUE 

DOCKNUMBER 
INDEX =  FALSE CLUSTEREO = FALSE 

SHIPID 
INDEX =  FALSE CLUSTEREO - FALSE 

MAXDRAFT 
INDEX =  FALSE CLUSTERFD « FALSE 

MAXLENGTH 
INDEX •  FALSE CLUSTERED = FALSE 

OCCUPIEDORNOTOCCUPIED 
INDEX =  FALSE  CLUSTERED = FALSE 

PORTNAME<-DOCKNUMBER 
INDEX =   TRUE  CLUSTERED = TRUE 

RELATION  STOPS 

TRUE  CLUSTERED 
SHIPID 
INDEX - TRUE 
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J- 
VOYAGENUMBER 
INDEX =  FALSE CLUSTERED - FALSE 

STOPNUMBER 
INDEX =  FALSE CLUSTERED = FALSE 

\ 
PORTNAME 
INDEX =  FALSE CLUSTERED - FALSE 

ARRIVALDATE 
INDEX =  FALSE CLUSTERED = FALSE 

ARRIVALTIME 
INDEX =  FALSE CLUSTERED * FALSE 

DEPARTUREDATE 
INDEX =  FALSE CLUSTERED - FALSE 

DEPARTURETIME 
INDEX =  FALSE CLUSTERED - FALSE 

DOCKNUMBER 
INDEX =  FALSE CLUSTERED = FALSE 

SHIPID<-VOYAGENUMBER 
INDEX =   TRUE  CLUSTERED » TRUE 

SHIPID»-VOYAGENUMBER<-STOPNUMBER 
INDEX =   TRUE  CLUSTERED =  FALSE 

PORTNAME<-DOCKNUMBER 
INDEX =  FALSE  CLUSTERED - FALSE 

RELATION   LEGS 

SHIPID 
INDEX =   TRUE CLUSTERED = TRUE 

VOYAGENUM8ER 
INDEX =  FALSE CLUSTERED * FALSE 

LEGNUMBER 
INDEX =  FALSE CLUSTERED - FALSE 

SOURCESTOP 
INDEX =  FALSE CLUSTERED = FALSE 

DESTINATIONSTOP 
INDEX =  FALSE CLUSTERED = FALSE 

SHIPID«-VOYAGENUMBER 
INDEX =   TRUE  CLUSTERED = TRUE 

SHIPID<-VOYAGENUMBER<-LEGNUMBER 
INDEX =   TRUE  CLUSTERED =  FALSE 

SHJPID<-VOYAGENUMBER<-SOURCESTOP 
INDEX =  FALSE  CLUSTERED ■=  FALSE 

SHTPTD<-VOYAGENUMBER*-DESTINATIONSTOP 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION  VOYAGES 

SHIPID 
INDEX =   TRUE CLUSTERED = FALSE 

VOYAGENUMBER 
INDEX =  FALSE CLUSTERED = FALSE 

"" 
CHARTERER 
INDEX =   TRUE CLUSTERED = TRUE 

SHIPID<-VOYAGENUMBER 
INDEX =   TRUE  CLUSTERED = FALSE 

» RELATION   CARGOCLASSES 

CARGOCLASS 
INDEX =  FALSE CLUSTERED = FALSE 

WUNIT 
INDEX =  FALSE  CLUSTERED =  FALSE 

VUNIT 
INDEX =  FALSE  CLUSTERED =  FALSE 
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RELATION  SHIPCLASSCARGOCLASS 

SHIPCLASS 
INDEX =  FALSE  CLUSTERED =■  FALSE 

CARGOCLASS 
INDEX =  TRUE CLUSTERED TRUE 

MAXVOLUHE 
INDEX =  FALSE  CLUSTERED =  FALSE 

MAXWEIGHT 
INDEX =■  FALSE  CLUSTERED =■  FALSE 

RELATION  COUNTRIES 

COUNTRYNAME 
INDEX =  FALSE CLUSTERED = FALSE 

COUNTRYABB 
INDEX =   TRUE CLUSTERED - TRUE 

POPULATION 
INDEX =  FALSE CLUSTERED =■ FALSE 

RELATION  SHIPS 

SHIPNAME 
INDEX =   TRUE CLUSTERED « FALSE 

SHIPID 
INDEX =   TRUE CLUSTERED = FALSE 

SHIPCLASS 
INDEX =  FALSE CLUSTERED - FALSE 

IRCS 
INDEX =  FALSE CLUSTERED = FALSE 

HULLNUMBER 
INDEX =  FALSE CLUSTERED • FALSE 

OWNER 
INDEX =   TRUE CLUSTERED = TRUE 

COUNTRYOFREGISTRY 
INDEX =   TRUE  CLUSTERED = FALSE 

LATITUDE 
INDEX •  FALSE CLUSTERED = FALSE 

NORS 
INDEX -  FALSE CLUSTERED =■ FALSE 

LONGITUDE 
INDEX -  FALSE CLUSTERED = FALSE 

EORW 
INDEX =■  FALSE CLUSTERED = FALSE 

DATEREPORTED 
INDEX =  FALSE CLUSTERED - FALSE 

TIMEREPORTED 
INDEX =  FALSE CLUSTERED * FALSE 

ATPORTORSEA 
INDEX «  FALSE CLUSTERED => FALSE 

RELATION  SHIPCLASSES 

SHIPTYPE 
INDEX =  FALSE CLUSTERED - FALSE 

SHIPCLASS 
INDEX =  FALSE CLUSTERED » FALSE 

FUELTYPE 
INDEX -  FALSE CLUSTERED = FALSE 

WCAP 
INDEX «  FALSE CLUSTERED - FALSE 

VCAP 
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INDEX =  FALSE CLUSTERED » FALSC 

CREWSZ 
INDEX = FALSE CLUSTERED • FALSE 

LIFEBOATCAP 
INDEX = FALSE CLUSTERED - FALSE 

FUELCAP 
INDEX = FALSE CLUSTERED - FALSE 

CRUISESPD 
INDEX =  FALSE CLUSTERED - FALSE 

HAXSPD 
INDEX =  FALSE CLUSTERED - FALSE 

FUELCONSATMAX 
INDEX = FALSE CLUSTERED - FALSE 

FUELCONSATCRUISING 
INDEX = FALSE CLUSTERED = FALSE 

BEAM 
INDEX = FALSE CLUSTERED - FALSE 

LENGTH 
INDEX =  FALSE CLUSTERED - FALSE 

MAXDRAFT 
INDEX =  FALSE CLUSTERED * FALSE 

DEADWEIGHT 
INDEX =  FALSE CLUSTERED - FALSE 

RELATION  SHIPTYPES 

SHIPTYPE 
INDEX -   TRUE CLUSTERED * TRUE 

DESCRIPTION 
INDEX =  FALSE CLUSTERED = FALSE 

RELATION  FUELTYPES 

FUELTYPE 
INDEX =  FALSE CLUSTERED = FALSE 

PRICE 
INDEX =  FALSE CLUSTERED = FALSE 

UNIT 
INDEX «  FALSE CLUSTERED " FALSE 
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OPTIMAL ACCESS CONFIGURATION FOR SITUATION 71 

TOTALCOST = 2.172586202E+06 

RELATION  TRACKS 

SHIPID 
INDEX =  FALSE  CLUSTERED 

VOYAGENUHBER 
INDEX »  FALSE  CLUSTERED 

LEGNUMBER 
INDEX =  FALSE  CLUSTERED 

DATE 
INDEX =  FALSE  CLUSTERED 

TIME 
INOEX TRUE  CLUSTERED 

TRUE 

FALSE 

FALSE 

FALSE 

FALSE 

COURSE 
INDEX =  FALSE  CLUSTERED =  FALSE 

SPEED 
INDEX =  FALSE  CLUSTERED =■  FALSE 

LATITUDE 
INDEX =  FALSE  CLUSTERED -  FALSE 

NORS 
INDEX =  FALSE CLUSTERED = FALSE 

LONGITUDE 
INDEX =  FALSE CLUSTERED = FALSE 

EORW 
INDEX -  FALSE CLUSTERED - FALSE 

REPORTER 
INDEX -   TRUE  CLUSTERED •  FALSE 

SHIPID<-VOYAGENUMBER<-LEGNUMBER 
INDEX -   TRUE  CLUSTERED -   TRUE 

RELATION   CARGOESONBOARD 

SHIPID 
INDEX = FALSE  CLUSTERED 

VOYAGENUMBER 
INDEX =  FALSE  CLUSTERED 

TRUE 

FALSE 

LEGNUMBER 
INDEX •  FALSE  CLUSTERED »  FALSE 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED =  FALSE 

QUANTITYWEIGHT 
INDEX =  FALSE  CLUSTERED =  FALSE 

QUANTITYVOLUME 
INDEX =  FALSE  CLUSTERED =  FALSE 

SHIPID«-VOYAGENUMBER«-LEGNUMBER 
INDEX =   TRUE  CLUSTERED =>   TRUE 

RELATION   LOADEDUNLOADFDCARGOES 

SHTPID 
INDEX = TRUE  CLUSTERED = 

VOYAGENUMBER 
INDEX =  FALSE  CLUSTERED 

STOPNUMBER 
INDEX •  FALSE  CLUSTERED 

TRUE 

FALSE 

FALSE 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED »  FALSE 

LORU 
INDEX =  FALSE  CLUSTERED »  FALSE 

QTYWGHT 
INDEX »  FALSE  CLUSTERED =  FALSE 
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QTYVOL 
INDEX = FALSE CLUSTERED FALSE 

SHIPID<-VOYAGENUMBER»-STOPNUMB£R 
INDEX =  TRUE CLUSTERED •  TRUE 

RELATION WAREHOUSES 

PORTNAHE 
INDEX = TRUE CLUSTERED - TRUE 

WAREHOUSENUHBER 
INDEX -  FALSE CLUSTERED = FALSE 

CARGOCLASS 
INDEX =  FALSE CLUSTERED - FALSE 

USEDORUNUSED 
INDEX =  FALSE CLUSTERED - FALSE 

QUANTITYWEIGHT 
INDEX =  FALSE CLUSTERED - FALSE 

QUANTITYVOLUME 
INDEX =  FALSE CLUSTERED - FALSE 

RELATION PORTS 

PORTNAHE 
INDEX = FALSE CLUSTERED =■ FALSE 

COUNTRY 
INDEX = FALSE CLUSTERED = FALSE 

LATITUDE 
INDEX = FALSE CLUSTERED = FALSE 

NORS 
INDEX = FALSE CLUSTERED = FALSE 

LONGITUDE 
INDEX =  FALSE CLUSTERED = FALSE 

EORW 
INDEX = FALSE CLUSTERED = FALSE 

MAXDRAFT 
INDEX = FALSE CLUSTERED = FALSE 

NUHBEROFDOCKS 
INDEX =  FALSE CLUSTERED = FALSE 

MAXLENGTH 
INDEX =  FALSE CLUSTERED = FALSE 

NUHREROFSHIPSATPORT 
INDEX =  FALSE  CLUSTERED = FALSE 

RELATION  DOCKS 

PORTNAHE 
INDEX «   TRUE 

DOCKNUHBER 
INDEX =  FALSE 

SHIPID 
INDEX =  FALSE 

MAXDRAFT 
INDEX =  FALSE 

MAXLENGTH 
INDEX =  FALSE 

CLUSTERED 

CLUSTERED 

CLUSTERED 

CLUSTERED 

CLUSTERED 

OCCUPIEDORNOTOCCUPIED 
INDEX =  FALSE  CLUSTERED 

PORTNAME<-DOCKNUHBER 
INDEX =  TRUE  CLUSTERED 

TRUE 

FALSE 

FALSE 

FALSE 

FALSE 

FALSE 

TRUE 

RELATION  STOPS 

SHIPID 
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INDEX TRUE CLUSTERED 

VOYAGENUMBER 
INDEX -  FALSE  CLUSTERED 

STOPNUM8ER 
INDEX =>  FALSE  CLUSTEREO 

PORTNAME 
INDEX =  FALSE  CLUSTERED 

ARRIVALDATE 
INDEX =  FALSE  CLUSTERED 

ARRIVALTIME 
INDEX =  FALSE CLUSTERED 

TRUE 

FALSE 

FALSE 

FALSE 

FALSE 

FALSE 

DEPARTUREDATE 
INDEX =  FALSE  CLUSTERED =  FALSE 

DEPARTURETIHE 
INDEX =  FALSE  CLUSTERED =■  FALSE 

DOCKNUMBER 
INDEX =  FALSE  CLUSTERED -  FALSE 

SHIPID<-VOYAGENUHBER 
INDEX =  TRUE  CLUSTERED =■  TRUE 

SHIPIO<-VOYAGENUMBER<-STOPNUMBER 
INDEX =  TRUE  CLUSTERED =  FALSE 

PORTNAME«-DOCKNUMBER 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION   LEGS 

SHIPID 
INDEX = TRUE  CLUSTERED TRUE 

VOYAGENUMBER 
INDEX =  FALSE  CLUSTERED »  FALSE 

LEGNUMBER 
INDEX -  FALSE  CLUSTERED =■  FALSE 

SOURCESTOP 
INDEX =  FALSE  CLUSTERED -  FALSE 

DESTINATIONSTOP 
INDEX =  FALSE  CLUSTERED -  FALSE 

SHIPID<-VOYAGENUMBER 
INDEX =   TRUE  CLUSTERED «   TRUE 

SHIPID<-VOYAGENUMBER«-LEGNUMBER 
INDEX =   TRUE  CLUSTERED =  FALSE 

SHIPID<-VOYAGENUMBER«-SOURCESTOP 
INDEX »  FALSE  CLUSTERED =  FALSE 

SHIPID<-VOYAGENUMBER«-DESTINATIONSTOP 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION  VOYAGES 

SHIPID 
INDEX •  TRUE CLUSTERED =■ FALSE 

VOYAGENUMBER 
INDEX =  FALSE CLUSTERED = FALSE 

CHARTERER 
INDEX -   TRUE CLUSTERED =■ TRUE 

SHIPID«-VOYAGENUMBER 
INDEX -   TRUE  CLUSTERED - FALSE 

RELATION  CARGOCLASSES 

CARGOCLASS 
INDEX =  FALSE CLUSTERED « FALSE 

WUNIT 
INDEX »  FALSE CLUSTERED = FALSE 

VUNIT 
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INDEX = FALSE CLUSTERED ■= FALSE 

RELATION  SHIPCLASSCARGOCLASS 

SHIPCLASS 
INDEX = FALSE CLUSTERED - FALSE 

CARGOCLASS 
INDEX - FALSE CLUSTERED - FALSE 

MAXVOLUME 
INDEX = FALSE CLUSTERED =  FALSE 

MAXWEIGHT 
INDEX = FALSE CLUSTERED - FALSE 

RELATION  COUNTRIES 

COUNTRYNAME 
INDEX • FALSE CLUSTERED « FALSE 

COUNTRYABB 
INDEX -  TRUE CLUSTERED =  TRUE 

POPULATION 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION  SHIPS 

SHIPNAHE 
INDEX *   TRUE CLUSTERED • FALSE 

SHIPID 
INDEX =   TRUE CLUSTERED = FALSE 

SHIPCLASS 
INDEX =  FALSE CLUSTERED » FALSE 

IRCS 
INDEX =  FALSE CLUSTERED = FALSE 

HULLNUMBER 
INDEX =  FALSE CLUSTERED = FALSE 

OWNER 
INDEX =   TRUE CLUSTERED - TRUE 

COUNTRYOFREGISTRY 
INDEX =   TRUE  CLUSTERED = FALSE 

LATITUDE 
INDEX -  FALSE CLUSTERED = FALSE 

NORS 
INDEX =  FALSE CLUSTERED » FALSE 

LONGITUDE 
INDEX «  FALSE CLUSTERED « FALSE 

EORW 
INDEX -  FALSE CLUSTERED « FALSE 

DATEREPORTED 
INDEX «  FALSE CLUSTERED = FALSE 

TIMEREPORTED 
INDEX -  FALSE CLUSTERED = FALSE 

ATPORTORSEA 
INDEX -  FALSE CLUSTERED = FALSE 

RELATION  SHIPCLASSES 

SHIPTYPE 
INDEX - FALSE CLUSTERED -  FALSE 

SHIPCLASS 
INDEX = FALSE CLUSTERED =  FALSE 

FUELTYPE 
INDEX =  FALSE  CLUSTERED =  FALSE 

WCAP 
INDEX -  FALSE  CLUSTERED -  FALSE 
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VCAP 
INDEX =  FALSE CLUSTERED =■ FALSE 

CREWSZ 
INDEX =  FALSE CLUSTERED = FALSE 

LIFEBOATCAP 
INDEX =  FALSE CLUSTERED =■ FALSE 

FUELCAP 
INDEX •  FALSE CLUSTERED =■ FALSE 

CRUISESPD 
INDEX '  FALSE CLUSTERED - FALSE 

HAXSPD 
INDEX =■  FALSE CLUSTERED =■ FALSE 

FUELCONSATMAX 
INDEX =  FALSE CLUSTERED =■ FALSE 

FUELCONSATCRUISING 
INDEX =  FALSE  CLUSTERED » FALSE 

BEAM 
INDEX =  FALSE CLUSTERED » FALSE 

LENGTH 
INDEX =■  FALSE CLUSTERED = FALSE 

MAXDRAFT 
INDEX =  FALSE CLUSTERED =■ FALSE 

DEADWEIGHT 
INDEX =  FALSE CLUSTERED = FALSE 

RELATION   SHIPTYPES 

SHIPTYPE 
INDEX =■   TRUE CLUSTERED = TRUE 

DESCRIPTION 
INDEX =  FALSE CLUSTERED =■ FALSE 

RELATION   FUELTYPES 

FUELTYPE 
INDEX =  FALSE CLUSTERED - FALSE 

PRICE 
INDEX =■  FALSE CLUSTERED » FALSE 

UNIT 
INDEX =  FALSE CLUSTERED =■ FALSE 
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OPTIMAL ACCESS CONFIGURATION FOR SITUATION 72 

TOTALCOST = 8.861027836E+05 NOT CORRECT IF STEP1C0ST WAS USED 

RELATION  TRACKS 

SHIPID 
INDEX * FALSE CLUSTERED = TRUE 

VOYAGENUMBER 
INDEX * FALSE CLUSTERED •= FALSE 

LEGNUMBER 
INDEX = FALSE CLUSTERED » FALSE 

DATE 
INDEX = FALSE  CLUSTERED - FALSE 

TIME 
INDEX =  FALSE CLUSTERED =■  FALSE 

COURSE 
INDEX =  FALSE  CLUSTERED 

SPEED 
INDEX FALSE  CLUSTERED 

LATITUDE 
INDEX =  FALSE  CLUSTERED 

NORS 
INDEX =  FALSE  CLUSTERED 

FALSE 

FALSE 

FALSE 

FALSE 

LONGITUDE 
INDEX =  FALSE  CLUSTERED =  FALSE 

EORW 
INDEX =  FALSE  CLUSTERED =  FALSE 

REPORTER 
INDEX =  FALSE  CLUSTERED =  FALSE 

SHIPID<-VOYAGENUMBER«-LEGNUMBER 
INDEX =   TRUE  CLUSTERED «   TRUE 

RELATION  CARGOESONBOARD 

SHIPID 
INDEX =  FALSE  CLUSTERED =   TRUE 

VOYAGENUMBER 
INDEX =  FALSE  CLUSTERED =  FALSE 

LEGNUMBER 
INDEX =  FALSE  CLUSTERED =  FALSE 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED =  FALSE 

QUANTITYWEIGHT 
INDEX =  FALSE  CLUSTERED =  FALSE 

QUANTITYVOLUME 
INDEX =  FALSE  CLUSTERED =  FALSE 

SHIPID«-VOYAGENUMBER<-LEGNUMBER 
INDEX =   TRUE  CLUSTERED =   TRUE 

RELATION  LOADEDUNLOADEDCARGOES 

TRUE 
SHIPID 
INDEX =  FALSE  CLUSTERED = 

VOYAGENUMBER 
INDEX = FALSE CLUSTERED = FALSE 

STOPNUMBER 
INDEX =  FALSE CLUSTERED « FALSE 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED =  FALSE 

LORU 
INDEX =  FALSE  CLUSTERED =  FALSE 

QTYWGHT 
INDEX =  FALSE  CLUSTERED =  FALSE 
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QTYVOL 
INDEX ■ FALSE  CLUSTERED FALSE 

SHIPID<-VOYAGENUMBER«-STOPNUMBER 
INDEX =  TRUE  CLUSTERED =  TRUE 

RELATION  WAREHOUSES 

PORTNAME 
INDEX = TRUE  CLUSTERED 

WAREHOUSENUMBER 
INDEX =  FALSE  CLUSTERED - 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED » 

USEDORUNUSED 
INDEX .-  FALSE  CLUSTERED " 

QUANTITYWEIGHT 
INDEX «  FALSE  CLUSTERED » 

QUANTITYVOLUME 
INDEX =  FALSE  CLUSTERED » 

TRUE 

FALSE 

FALSE 

FALSE 

FALSE 

FALSE 

RELATION  PORTS 

PORTNAME 
INDEX =  FALSE CLUSTERED - FALSE 

COUNTRY 
INDEX =  FALSE CLUSTERED = FALSE 

LATITUDE 
INDEX =  FALSE CLUSTERED = FALSE 

NORS 
INDEX -  FALSE CLUSTERED - FALSE 

LONGITUDE 
INDEX -  FALSE CLUSTERED » FALSE 

EORW 
INDEX =  FALSE CLUSTERED = FALSE 

MAXDRAFT 
INDEX «  FALSE CLUSTERED » FALSE 

NUMBEROFDOCKS 
INDEX =  FALSE CLUSTERED * FALSE 

MAXtENGTH 
INDEX -  FALSE CLUSTERED - FALSE 

NUMBEROFSHIPSATPORT 
INDEX =  FALSE  CLUSTERED > FALSE 

RELATION  DOCKS 

PORTNAME 
INDEX =  FALSE CLUSTERED = TRUE 

DOCKNUMBER 
INDEX =  FALSE CLUSTERED » FALSE 

SHIPID 
INDEX -  FALSE CLUSTERED - FALSE 

MAXDRAFT 
INDEX -  FAISE CLUSTERED = FALSE 

MAXLENGTH 
INDEX =  FALSE CLUSTERED - FALSE 

OCCUPIEDORNOTOCCUPIED 
INDEX =  FALSE  CLUSTERED = FALSE 

PORTNAME<-DOCKNUMBER 
INDEX =   TRUE  CLUSTERED - TRUE 

RELATION 

SHIPID 

STOPS 
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INDEX =  FALSE CLUSTERED -  TRUE 

VOYAGENUHBER 
INDEX =  FALSE CLUSTERED -  FALSE 

STOPNUMBER 
INDEX =  FALSE CLUSTERED -  FALSE 

PORTNAME 
INDEX =  FALSE CLUSTERED =  FALSE 

ARRIVALDATE 
INDEX =  FALSE CLUSTERED -  FALSE 

ARRIVALTIME 
INDEX =  FALSE  CLUSTERED =  FALSE 

DEPARTUREDATE 
INDEX =  FALSE CLUSTERED -  FALSE 

DEPARTURETIME 
INDEX =  FALSE CLUSTERED =  FALSE 

DOCKNUMBER 
INDEX =  FALSE CLUSTERED =  FALSE 

SHIPID<-VOYAGENUMBER 
INDEX -  FALSE  CLUSTERED =  FALSE 

SHIPID*-VOYAGENUMBER«-STOPNUMBER 
INDEX =   TRUE  CLUSTERED =   TRUE 

PORTNAME<-DOCKNUMBER 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION   LEGS 

SHIPID 
INDEX =  FALSE  CLUSTERED =   TRUE 

VOYAGENUHBER 
INDEX =  FALSE  CLUSTERED =  FALSE 

LEGNUMBER 
INDEX *  FALSE  CLUSTERED ■=  FALSE 

SOURCESTOP 
INDEX =  FALSE  CLUSTERED =  FALSE 

DESTINATIONSTOP 
INDEX =  FALSE  CLUSTERED «  FALSE 

SHIPID»-VOYAGENUMBER 
INDEX -  FALSE  CLUSTERED =  FALSE 

SHIPID*-VOYAGENUMBER<-LEGNUMBER 
INDEX -   TRUE  CLUSTERED =   TRUE 

SHIPID<-VOYAGENUMBER-SOURCESTOP 
INDEX =  FALSE  CLUSTERED =  FALSE 

SHIPID<-VOYAGENUMBER»-DESTINATIONSTOP 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION  VOYAGES 

SHIPID 
INDEX =  FALSE CLUSTERED = TRUE 

VOYAGENUMBER 
INDEX =  FALSE CLUSTERED « FALSE 

CHARTERER 
INDEX =  FALSE CLUSTERED = FALSE 

SHIPID<-VOYAGENUMBER 
INDEX =   TRUE  CLUSTERED = TRUE 

RELATION  CARGOCLASSES 

CARGOCLASS 
INDEX =  FALSE  CLUSTERED FALSE 

WUNIT 
INDEX =  FALSE  CLUSTERED =  FALSE 

VUNIT 
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INDEX =  FALSE  CLUSTERED =■  FALSE 

RELATION  SHIPCLASSCARGOCLASS 

SHIPCLASS 
INDEX =  FALSE  CLUSTERED =■  FALSE 

CARGOCLASS 
INDEX «  FALSE CLUSTERED =■  FALSE 

HAXVOLUHE 
INDEX =  FALSE  CLUSTERED =■  FALSE 

MAXUEIGHT 
INDEX =  FALSE CLUSTERED =  FALSE 

RELATION  COUNTRIES 

COUNTRYNAHE 
INDEX =  FALSE  CLUSTERED =  FALSE 

COUNTRYABB 
INDEX =  TRUE  CLUSTERED =  TRUE 

POPULATION 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION  SHIPS 

SHIPNAME 
INDEX =  FALSE  CLUSTERED =  FALSE 

SHIPID 
INDEX »   TRUE  CLUSTERED *   TRUE 

SHIPCLASS 
INDEX =  FALSE  CLUSTERED =■  FALSE 

IRCS 
INDEX =  FALSE  CLUSTERED =  FALSE 

HULLNUMBER 
INDEX =  FALSE  CLUSTERED =  FALSE 

OWNER 
INDEX =  FALSE  CLUSTERED =  FALSE 

COUNTRYOFREGISTRY 
INDEX =  FALSE  CLUSTERED =  FALSE 

LATITUDE 
INDEX =  FALSE  CLUSTERED =  FALSE 

NORS 
INDEX =  FALSE  CLUSTERED =  FALSE 

LONGITUDE 
INDEX »  FALSE  CLUSTERED =  FALSE 

EORW 
INDEX •  FALSE CLUSTERED =  FALSE 

DATEREPORTED 
INDEX «  FALSE  CLUSTERED =  FALSE 

TIMEREPORTEO 
INDEX =  FALSE  CLUSTERED =  FALSE 

ATPORTORSEA 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION  SHIPCLASSES 

SHIPTYPE 
INDEX =  FALSE  CLUSTERED =■  FALSE 

SHIPCLASS 
INDEX «  FALSE  CLUSTERED =  FALSE 

FUELTYPE 
INDEX =  FALSE  CLUSTERED =  FALSE 

WCAP 
INDEX =  FALSE  CLUSTERED =  FALSE 
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VCAP 
INDEX =  FALSE CLUSTERED - FALSE 

CREWSZ 
INDEX =  FALSE CLUSTERED = FALSE 

LIFEBOATCAP 
INDEX -  FALSE CLUSTERED • FALSE 

FUELCAP 
INDEX -  FALSE CLUSTERED ■ FALSE 

CRUISESPD 
INDEX =■  FALSE CLUSTERED - FALSE 

HAXSPD 
INDEX =  FALSE CLUSTERED - FALSE 

FUELCONSATMAX 
INDEX =  FALSE CLUSTERED = FALSE 

FUELCONSATCRUISING 
INDEX =  FALSE  CLUSTERED - FALSE 

BEAM 
INDEX =  FALSE CLUSTERED - FALSE 

LENGTH 
INDEX «  FALSE CLUSTERED ' FALSE 

MAXDRAFT 
INDEX =  FALSE CLUSTERED - FALSE 

DEADWEIGHT 
INDEX =  FALSE CLUSTERED - FALSE 

RELATION  SHIPTYPES 

SHIPTYPE 
INDEX -  FALSE  CLUSTERED FALSE 

DESCRIPTION 
INDEX =  FALSE  CLUSTERED =  FALSE 

RELATION FUELTYPES 

FUELTYPE 
INDEX = FALSE CLUSTERED = FALSE 

PRICE 
INDEX = FALSE CLUSTERED = FALSE 

UNIT 
INDEX = FALSE CLUSTERED = FALSE 

Figure K-8:   Situations 70, 71,72, and their optimal solutions. 
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